
IBM® Tivoli® Netcool/OMNIbus Gateway for
JDBC
7.0

Reference Guide
August 21, 2020

IBM

SC22-5408-11

Notice

Before using this information and the product it supports, read the information in Appendix A, “Notices
and Trademarks,” on page 59.

Edition notice

This edition (SC22-5408-11) applies to version 7.0 of the IBM Tivoli Netcool/OMNIbus Gateway for JDBC and to all
subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC22-5408-10.
© Copyright International Business Machines Corporation 2011, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this guide.. v
Document Control Page... v
Conventions used in this guide... ix

Chapter 1. Gateway for JDBC... 1
Summary.. 1
Supported databases...3
Overview of the gateway..4
Audit mode and reporting mode..5
Target database sizing... 6
Installing the gateway..9

Installing probes and gateways on Tivoli Netcool/OMNIbus V8.1... 9
Setting environment variables...11
Configuring communication details...11
Configuring the database schema...11

Migrating from an existing gateway... 12
Configuring the database connection... 13
Integrating with an Oracle database...16
Integrating with a Microsoft SQL Server database... 21
Integrating with a DB2 database...23
Integrating with a MySQL Server database...24
Configuring SSL connections... 25
Configuring the gateway.. 26

Properties file... 27
Properties and command line options...28
Supporting configuration files..44
Map definition file...46
Startup command file...46
Table replication definition file.. 47
AfterIDUC and Filter functions...49
Using a partitioning field.. 50
Filtering resynchronization data.. 50
Message log file.. 51
FIPS mode and encryption...52

Gateway statistics..52
Error messages.. 53

JDBC error messages... 54
Running the gateway... 55
Known issues... 56

Gateway core dump when shutting it down.. 56
Custom table labelling... 56
SQL error states..56
Sybase naming schemes..56

Frequently asked questions.. 56

Appendix A. Notices and Trademarks... 59
Notices... 59
Trademarks.. 60

 iii

iv

About this guide

The following sections contain important information about using this guide.

Document Control Page
Use this information to track changes between versions of this guide.

The IBM Tivoli Netcool/OMNIbus Gateway for JDBC documentation is provided in softcopy format only. To
obtain the most recent version, visit the IBM® Tivoli® Netcool® Knowledge Center:

http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/common/kc_welcome-444.html?
lang=en

Table 1. Document modification history

Document version Publication date Comments

SC22-5408-00 December 02,
2011

First IBM publication.

SC22-5408-01 December 16,
2011

Requirements information updated in “Summary” on page
1.

Script library information updated in Obtaining the gateway.

SC22-5408-02 March 02, 2012 Requirements information updated in “Summary” on page
1.

List of supported databases updated in “Supported
databases” on page 3.

Information about obtaining the gateway updated in Obtaining
the gateway.

Database configuration information updated in “Configuring
the database connection” on page 13.

Sybase naming scheme issue described in “Known issues” on
page 56.

SC22-5408-03 July 06, 2012 Package version updated in “Summary” on page 1.

Gate.Jdbc.Url property descriptions for use with DB2 LUW
and DB2 z/OS updated in “Configuring the database
connection” on page 13.

“Properties and command line options” on page 28 updated.

ObjectServer table replication information updated in “Table
replication definition file” on page 47.

“AfterIDUC and Filter functions” on page 49 added.

“Custom table labelling” on page 56added.

© Copyright IBM Corp. 2011, 2020 v

http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/common/kc_welcome-444.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSSHTQ/omnibus/common/kc_welcome-444.html?lang=en

Table 1. Document modification history (continued)

Document version Publication date Comments

SC22-5408-04 September 30,
2012

The descriptions for the following properties have been
updated in the “Properties and command line options” on
page 28:

• ConfigCryptoAlg
• ConfigKeyFile
• Gate.RdrWtr.Password
• Gate.Jdbc.Password

“FIPS mode and encryption” on page 52 updated.

SC22-5408-05 November 30,
2012

Guide updated for Netcool/OMNIbus V7.4 release.

SC22-5408-06 March 14, 2013 Information regarding migrating from a persistent state
gateway added to “Migrating from an existing gateway” on
page 12.

Support was added for IBM Netezza data warehouse.

Information about how to use the internal JDBC driver for
testing the database connection added to “Configuring the
database connection” on page 13.

The descriptions for the following properties have been
updated in the “Properties and command line options” on
page 28:

• Gate.Jdbc.SuppressDeletes
• Gate.Jdbc.TestCount

Instructions to use the TRANSFER command to transfer data
from one table to another added to “Startup command file” on
page 46.

Instructions to use the Gate.ResynchTables property in
the Gateway NGtKTool kit to transfer data from dynamic
tables added to “Table replication definition file” on page 47.

Core dump issue described in “Known issues” on page 56.

SC22-5408-07 September 30,
2013

“Supported databases” on page 3 updated.

A description for the following property has been added to the
“Properties and command line options” on page 28:

• Gate.ResyncTables

Instructions to use the TRANSFER command to transfer data
from one table to another improved in the “Startup command
file” on page 46.

Instructions for using the Gate.ResynchTables property
improved in “Table replication definition file” on page 47.

vi IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Table 1. Document modification history (continued)

Document version Publication date Comments

SC22-5408-08 November 8,
2013

The gateway-nco-g-jdbc-reporting-scripts
information when running the gateway in reporting mode has
been updated in “Audit mode and reporting mode” on page
5

“Configuring SSL connections” on page 25

SC22-5408-09 March 12, 2015 Package version and Requirements updated in “Summary” on
page 1.

Removed the Obtaining the gateway topic. Obtaining the
gateway is described in the installation related topics. See
“Installing the gateway” on page 9.

64 bit support added.

SC22-5408-10 July 28, 2016 “Frequently asked questions” on page 56 added.

About this guide vii

Table 1. Document modification history (continued)

Document version Publication date Comments

SC22-5408-11 August 21, 2020 Updated for version 7 of the gateway.

“Summary” on page 1 updated.

Description for the generic Netcool/OMNIbus property
Props.LiveUpdate added to “Common Tivoli Netcool/
OMNIbus properties” on page 28. Props.LiveUpdate is
available in the Netcool/OMNIbus patch that fixes APAR
IJ21246.

Descriptions for the following new properties added to
“Properties and command line options” on page 28:

• Gate.Jdbc.DriverPasswordPropertyName
• Gate.Jdbc.DriverUserPropertyName
• Gate.Jdbc.InitializationTimeout
• Gate.Jdbc.InitializeAllSessions
• Gate.Jdbc.JavaSystemPropsFile
• Gate.Jdbc.JdbcPropsFile
• Gate.Jdbc.PreconnectionWait
• Gate.Jdbc.SqlTimeout

The following database integration sections added:

• “Integrating with an Oracle database” on page 16
• “Integrating with a Microsoft SQL Server database” on page

21
• “Integrating with a DB2 database” on page 23

Fixes:Version 7 of the JDBC Gateway includes fixes for the
following APARs:

• IV98887: Limit result sets when validating fields to one row,
so we can efficiently handle large target tables without
invoking full table scans.

IV79462: Add comment to reporting JDBC map relating to
STATECHANGE column. It is only defined in the DB2
schema, and needs commenting out for other databases
with the default schemas.

The gateway wass enhanced for RFE 137263: Netcool
OMNIbus JDBC Gateway support for Kerberos
Authentication to Oracle.

The scope and system configurations of the gateway's
Kerberos testing:

The following setup was used in the verification: Linux 7,
Kerberos V5, Oracle 19c, IBM DB2 10.5. The KDC server and
the target database were residing in same machine.

Due to the setup complication encountered in the respective
databases, combined security of Kerberos and SSL is not
verified.

The following gateway dependency bundles also updated::

• gateway-libngjava-9
• gateway-libngtktk-8

The paths specific to IBM Java, Oracle Java, and OpenJDK
Java updated in nco_g_jdbc.env.

viii IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Conventions used in this guide
All gateway guides use standard conventions for operating system-dependent environment variables and
directory paths.

Operating system-dependent variables and paths
All gateway guides use standard conventions for specifying environment variables and describing
directory paths, depending on what operating systems the gateway is supported on.

For gateways supported on UNIX and Linux operating systems, gateway guides use the standard UNIX
conventions such as $variable for environment variables and forward slashes (/) in directory paths. For
example:

$OMNIHOME/gates

For gateways supported only on Windows operating systems, gateway guides use the standard Windows
conventions such as %variable% for environment variables and backward slashes (\) in directory paths.
For example:

%OMNIHOME%\gates

For gateways supported on UNIX, Linux, and Windows operating systems, gateway guides use the
standard UNIX conventions for specifying environment variables and describing directory paths. When
using the Windows command line with these gateways, replace the UNIX conventions used in the guide
with Windows conventions. If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

Note : The names of environment variables are not always the same in Windows and UNIX environments.
For example, %TEMP% in Windows environments is equivalent to $TMPDIR in UNIX and Linux
environments.

Operating system-specific directory names
Where Tivoli Netcool/OMNIbus files are identified as located within an arch directory under NCHOME or
OMNIHOME, arch is a variable that represents your operating system directory. For example:

$OMNIHOME/platform/arch

The following table lists the directory names used for each operating system.

Note : This gateway may not support all of the operating systems specified in the table.

Table 2. Directory names for the arch variable

Operating system Directory name represented by arch

AIX® systems aix5

Red Hat Linux® and SUSE systems linux2x86

Linux for System z® linux2s390

Solaris systems solaris2

Windows systems win32

OMNIHOME location
Gateways and older versions of Tivoli Netcool/OMNIbus use the OMNIHOME environment variable in
many configuration files. Set the value of OMNIHOME as follows:

About this guide ix

• On UNIX and Linux, set $OMNIHOME to $NCHOME/omnibus.
• On Windows, set %OMNIHOME% to %NCHOME%\omnibus.

x IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Chapter 1. Gateway for JDBC

The IBM Tivoli Netcool/OMNIbus Gateway for JDBC uses the standard Java™ Database Connectivity
(JDBC) API to exchange alerts between Netcool/OMNIbus ObjectServers and external databases. It
communicates with the supported databases using Java Type 4 JDBC drivers supplied by the database
vendors.

The Gateway for JDBC can be used as a replacement for the Tivoli Netcool/OMNIbus Gateway for ODBC
and the Tivoli Netcool/OMNIbus Gateway for Oracle.

The Gateway for JDBC has the following features:

• Reporting and audit modes of operation.
• Store and forward (SAF) capability using persistent event cache and data forwarding.
• Resynchronization on startup.
• Scalability provided by multiple database connections.
• Arbitrary table transfers.
• Migration from existing target databases using bidirectional resynchronization.

This guide contains the following sections:

• “Summary” on page 1
• “Supported databases” on page 3
• “Overview of the gateway” on page 4
• “Audit mode and reporting mode” on page 5
• “Target database sizing” on page 6
• “Installing probes and gateways on Tivoli Netcool/OMNIbus V8.1” on page 9
• “Setting environment variables” on page 11
• “Configuring communication details” on page 11
• “Configuring the database schema” on page 11
• “Configuring the database connection” on page 13
• “Configuring the gateway” on page 26
• “Gateway statistics” on page 52
• “Error messages” on page 53
• “Running the gateway” on page 55
• “Known issues” on page 56
• “Frequently asked questions” on page 56

Summary
Each gateway works in a different way to provide an interface to the ObjectServer. This summary
describes the basic characteristics of the gateway.

The following table provides a summary of the gateway.

© Copyright IBM Corp. 2011, 2020 1

Table 3. Summary

Gateway target DB2® LUW, DB2 z/OS®, Informix®, Microsoft SQL Server, MySQL,
Oracle, Sybase

See “Supported databases” on page 3 for details of supported
versions.

Gateway executable file name nco_g_jdbc

Gateway installation package omnibus-arch-gateway-nco-g-jdbc-version

Package version 7.0

Gateway supported on For details of supported operating systems, see the following Release
Notice on the IBM Software Support website:

https://www-304.ibm.com/support/docview.wss?uid=swg21623766

Configuration Files $OMNIHOME/gates/jdbc/G_JDBC.props

$OMNIHOME/gates/jdbc/audit.G_JDBC.props

$OMNIHOME/gates/jdbc/audit.jdbc.map

$OMNIHOME/gates/jdbc/jdbc.map

$OMNIHOME/gates/jdbc/jdbc.rdrwtr.tblrep.def

$OMNIHOME/gates/jdbc/jdbc.startup.cmd

$OMNIHOME/gates/jdbc/reporting.G_JDBC.props

$OMNIHOME/gates/jdbc/reporting.jdbc.map

Requirements A currently supported version of IBM Tivoli Netcool/OMNIbus .

Audit mode script library (required to run the gateway in audit mode):
gateway-nco-g-jdbc-audit-scripts-1_0

Reporting mode script library (required to run the gateway in
reporting mode): gateway-nco-g-jdbc-reporting-
scripts-1_0

Gateway Java Support Package: gateway-libngjava-7 (or later)

Gateway NGtkTK Support Package: gateway-libngtktk-6 (or
later)

The Gateway for JDBC requires third party drivers to support
connecting with the target database. For more information see
“Supported databases” on page 3.

Multicultural support Not available

IP environment IPv4 and IPv6

Note : IPv6 support for the database connection depends on the
JDBC driver. Consult your JDBC driver documentation for IPv6
support information.

2 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

https://www-304.ibm.com/support/docview.wss?uid=swg21623766

Table 3. Summary (continued)

Federal Information Processing
Standards (FIPS)

IBM Tivoli Netcool/OMNIbus V7.3.0, 7.3.1 and 7.4.0 use the FIPS
140-2 approved cryptographic provider: IBM Crypto for C (ICC)
certificate 384 for cryptography. This certificate is listed on the NIST
web site at http://csrc.nist.gov/cryptval/140-1/1401val2004.htm. For
details about configuring Netcool/OMNIbus for FIPS 140-2 mode, see
the IBM Tivoli Netcool/OMNIbus Installation and Deployment Guide.

Supported databases
The Gateway for JDBC is supported for use with the databases listed here.

The gateway is supported for use with the databases and JDBC drivers listed in the following table.

Note : The Gateway for JDBC will support a database once the vendor supplies a suitable JDBC driver that
works with the gateway. Drivers not listed in this table are not supported by IBM Software Support, but if
a third party JDBC driver does not function correctly due to a fault with the Gateway for JDBC, then IBM
Software Support will provide support.

Table 4. Supported databases and JDBC drivers

Database JDBC Driver

DB2 LUW DB2 Type 4 Universal Driver
(com.ibm.db2.jcc.DB2Driver)

DB2 z/OS DB2 Type 4 Universal Driver
(com.ibm.db2.jcc.DB2Driver)

Informix IBM Informix JDBC Driver
(com.informix.jdbc.IfxDriver)

Microsoft SQL Server Microsoft JDBC Driver for SQL Server
(com.microsoft.sqlserver.jdbc.SQLServerDriver)

Note : On OMNIbus installations which are JRE 1.7 based the
Microsoft JDBC Driver 4.2 up till 6.4 can be used.. For
OMNIbus installations using JRE 1.8, Microsoft JDBC Driver
7.0 and above may be used providing that the driver used is
the JRE 1.8 version. For more details on the Microsoft JDBC
Driver, please refer to the Microsoft JDBC Driver for SQL
Server website. Ensure that multiple versions of the .jar
files are not installed in the $CLASSPATH or in the
$OMNIHOME/gates/java location simultaneously.

MySQL MySQL Connector/J (com.mysql.jdbc.Driver)

IBM Netezza data warehouse Netezza JDBC Driver (org.netezza.Driver)

Oracle Oracle JDBC Thin Driver
(oracle.jdbc.driver.OracleDriver)

Note : When the database connection is enabled with
Kerberos authentication, the gateway must be run using
Oracle Java. See: “Deploying the gateway with non-IBM Java”
on page 46.

Chapter 1. Gateway for JDBC 3

http://csrc.nist.gov/cryptval/140-1/1401val2004.htm

Table 4. Supported databases and JDBC drivers (continued)

Database JDBC Driver

Sybase Sybase jConnect for JDBC
(com.sybase.jdbc4.jdbc.SybDriver)

Overview of the gateway
The Gateway for JDBC uses the JDBC Manager built in to the IBM JVM (supplied with Tivoli Netcool/
OMNIbus) to exchange alerts between Tivoli Netcool/OMNIbus ObjectServers and external databases. It
communicates with the supported databases using Java Type 4 JDBC drivers supplied by the database
vendors.

Gateway operation
In the default unidirectional resynchronization mode, the gateway processes Insert, Delete, Update,
Control (IDUC) cycles as follows:

1. The reader-writer component receives data from the ObjectServer.
2. The reader-writer component formats the data into a map, keyed using field names, and passes the

mapped data to the gateway manager component.
3. The manager component uses the type of the source table (status, journal, or details) and the lifecycle

state of the alert (the alert exists or not in the gateway cache) to form the SQL statement required to
send the alert update to the target database.

4. The manager component writes the SQL statement to the current batch.

If there is no existing batch, the manager component creates one.
5. The manager component processes all the data in the current IDUC cycle, saves the batch to disk, and

queues the batch into the gateway cache.

The cache is saved as part of this process.
6. The consumer component reads the batch from the queue, reading it from the disk if necessary.
7. The consumer component processes all the SQL statements contained in the batch.
8. The processor component executes portions of the batch atomically.

Persistence and reliability
The gateway manages two pieces of persistent data: the cache of known alerts and outstanding batches,
and the batches themselves. Batches are only processed after the batch and the cache have been
successfully saved to disk. If the gateway shuts down unexpectedly, it should be possible to recover the
committed state without duplicating or losing data.

Note : Successful recovery also depends on the proper operation of the underlying JVM and the host
operating system.

The batching mechanism effectively operates as a store and forward (SAF) mechanism. Fatal errors, such
as SQL parse errors or constraint errors, result in the bad data being logged and then discarded.

The gateway also supports atomic and durable updates to the cache and batch files. This protects against
data corruption and ensures that the data in the gateway working area is always valid.

Resynchronization
The gateway can perform two types of resynchronization: unidirectional and bidirectional. The
Gate.Jdbc.ResyncMode property provides four resynchronization modes to control how the gateway
performs resynchronizations.

4 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

The following resynchronization modes are available:

1. None

The gateway does not perform resynchronization.
2. Unidirectional

The gateway compares the contents of its cache with the contents of the ObjectServer
alerts.status table. New, deleted, and updated alerts are forwarded to the target database, thus
resynchronizing it with the ObjectServer.

3. Bidirectional

The gateway seeds its cache with any open alerts stored in the target database. It then compares the
contents of its cache with the contents of the ObjectServer alerts.status table and resynchronizes
the target database accordingly.

Note : Bidirectional resynchronization results in full table scans on the target database status table. A
large amount of event history will result in a long resynchronization.

4. Automatic

This is the default resynchronization mode. It causes the gateway to operate in unidirectional
resynchronization mode by default. However, if the gateway cache is empty on startup (which normally
only occurs the first time that the gateway is run), it causes the gateway to operate in bidirectional
resynchronization mode. In this mode, only the alerts.status and alerts.journal ObjectServer
tables are resynchronized to the target database. You can manually resynchronize other ObjectServer
tables using transfer commands.

Deduplication
The gateway deduplicates updates to alerts and journals. This results in efficient resynchronization,
because only alerts that have changed are forwarded to the target database. It also means that updates
to fields that are not included in the map definition file, or fields that are not required in the target
database (such as the state change field), are ignored.

Audit mode and reporting mode
The gateway can operate in one of two modes, audit mode or reporting mode. In audit mode, the gateway
archives events to a target database for auditing purposes. In reporting mode, the gateway archives
events to a target database for use with reporting tools such as Tivoli Netcool/Reporter or Tivoli Common
Reporting.

Audit mode
If you want to run the gateway in audit mode, you must configure the appropriate database schema. If
you are using the Gateway for JDBC as a replacement for the Gateway for Oracle or the Gateway for
ODBC, your existing target database configuration might not require any changes. Otherwise, you must
install the gateway-nco-g-jdbc-audit-scripts library. This library contains the SQL scripts
required to create the target database schema.

In audit mode, a new row is created in the database table for every new alert and alert update. The target
database can contain multiple rows for each alert, depending on its update history. In audit mode,
existing data in the target database is never updated or deleted.

Inserts, updates, and deletes are mapped as follows:

• New alerts cause a new row to be inserted into the target database.
• Alert updates cause a new row containing the updated alert values to be inserted into the target

database. Previous alert values are preserved in previously created rows.

Chapter 1. Gateway for JDBC 5

• Alert deletes cause a new row containing the final alert values to be inserted into the target database.
Most of the alert data is no longer available at deletion time, so the delete row will contain mostly NULL
values. Previous alert values are preserved in previously created rows.

Reporting mode
If you want to run the gateway in reporting mode, you must configure the appropriate database schema
and install the gateway-nco-g-jdbc-reporting-scripts library. If you are using the Gateway for
JDBC as a replacement for the Gateway for Oracle or the Gateway for ODBC, your existing target database
configuration might not require any changes. Otherwise, you must install the gateway-nco-g-jdbc-
reporting-scripts library. This library contains the SQL scripts required to create the target database
schema.

Note : You must have the database and tablespace already installed and configured before running the
SQL scripts.

In reporting mode, the target database contains one row for each new alert and that row is updated
whenever the alert is updated. This requires that the target database be configured for reporting, which
involves various triggers to generate the reporting data. In reporting mode, the gateway essentially
replicates the source status table from the ObjectServer into the target database.

Inserts, updates, and deletes are mapped as follows:

• New alerts cause a new row, unique to the alert, to be inserted into the target database.
• Alert updates cause the existing alert row to be updated with the new alert values.
• Alert deletes cause the existing alert row to be updated with a deletion timestamp.

Table 5. Reporting and Audit mode is supported for the following platforms.

Database Audit Mode Reporting

DB2 Yes Yes

Informix Yes Yes

Microsoft SQL Server Yes Yes

MySql Yes No

Netezza Yes No

Oracle Yes Yes

Sybase Yes Yes

Target database sizing
The main factors that affect database growth (and hence your database sizing requirements) are: the size
of an event, the rate at which events are passed to the database, and the combination of the gateway
operating mode (audit or reporting) and the mix of event types (insert, update, or delete). The following
topics discuss these factors and how to assess your system to determine your optimal sizing
requirements.

Tivoli Netcool/OMNIbus event size
The target database row size should correspond closely to the Tivoli Netcool/OMNIbus event size. This is
because the supplied database schemas broadly mirror the Tivoli Netcool/OMNIbus schema.

The size of a row, or individual event, depends on the following factors:

6 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

• Sizes of individual fields
• Whether custom fields have been added
• Whether default fields have been omitted
• Whether fields are actually populated with data

The maximum allowable field size can be determined by describing the ObjectServer tables by running
nco_sql and executing the following commands:

> describe alerts.status
> go

The maximum possible size of an event can be determined by a summation of a table's field sizes.

The following table shows the maximum allowable row sizes for a default Tivoli Netcool/OMNIbus 8.1
installation:

Table Maximum row size

alerts.status 10284 bytes

alerts.journal 4347 bytes

alerts.details 1028 bytes

The following table shows the typical row sizes that you are likely to encounter in most practical
applications:

Table Typical operational row size

alerts.status 2048 bytes

alerts.journal 512 bytes

alerts.details 0 bytes

Event rate
The rate at which events are passed to the gateway for forwarding to the database can be assessed
empirically (observed over a period of time), or an assessment can be made of the expected or required
throughput.

The extent to which throughput correlates to input from data sources such as probes may be significantly
affected by deduplication. Deduplication converts inserts into the ObjectServer (with the same
Identifier values) to updates (incrementally increasing the Tally field) thus limiting ObjectServer size
and potentially limiting the size of the target database. The effect of deduplication may be to reduce data
volume by a factor of 10. To calculate the volume reduction that deduplication has on a particular data
flow, calculate the ratio of actual events to inserted events in alerts.status by dividing the tally
sum(Tally) by the count count(*).

Filter conditions applied in gateway configuration will also restrict the gateway's interest to a subset of
events placed into the ObjectServer, and so limit the size of the target database.

Operation mode
Database gateways operate in one of two modes:

• Audit: In audit mode, all Tivoli Netcool/OMNIbus event types (inserts, updates and deletes) are
forwarded as inserts, thus maintaining an audit trail within the target database, subject to (or restricted
by) the granularity of the IDUC cycle.

Chapter 1. Gateway for JDBC 7

• Reporting: In reporting mode, both Tivoli Netcool/OMNIbus updates and deletes are forwarded as
updates to previously inserted rows.

A gateway operating in reporting mode is likely to populate the database with less data. However, triggers
included in the default reporting database schemas populate additional tables with summarized data,
from which reports are run. Typically an additional table will be populated and maintained in the database
for each report that may be run. These tables are relatively small in comparison to the main status table;
see below for further information.

Note : Database gateways do not delete rows from target database tables. Thus target databases will
grow in size indefinitely without database pruning or archiving taking place as a separate activity. This is
independent of the mode of operation of the gateway.

Monitored tables
The configuration of the gateway determines which Tivoli Netcool/OMNIbus tables are monitored. Most
users configure gateways to monitor just the alerts.status table, but you can also monitor the
alerts.journal and alerts.details tables. The alerts.details table, even if monitored by the
gateway, is generally not populated with data in default probe configurations. In general, it is populated
only in debugging or setup scenarios. Currently, none of the default database gateway reports depend on
data received from the alerts.details table.

Although database gateways are primarily used for receiving data from the three main tables (status,
journals and details), other tables may be monitored in a custom setup. This would impact on database
size requirements.

Journal entries
Journal entries fall into two main categories: those automatically generated by automations, for example
when an event is acknowledged or deleted by a right-click tool defined in the event viewer, and those
created by users. Automatically generated journals are generally short, and the ratio of the number of
journal entries to the number of events is low. The size of user generated journals is determined by the
individual user behaviour or policy.

Reporting tables
As mentioned above, the reporting schemas contain other tables in addition to the analogues of the three
main Tivoli Netcool/OMNIbus tables (status, journal and details). These fall into two categories: tables
from which reports are generated (one per report definition, currently there are four, generally named
rep_audit_fieldname, and containing one row per status event) and tables of mostly static or rarely
changing data. The second type are generally small and can be ignored in sizing calculations, or absorbed
into margins for error. Rows in tables used for generating reports are typically less than 256 bytes.

Target implementation and tuning
Multiplying event rate by event size provides a good rough estimate of the target database size, but
database implementation and tuning can easily, and significantly, increase these calculations. One factor
to consider is block size and how empty or full you allow data blocks to become when they are updated.

Depending on the database implementation and the level of tuning, you can expect to increase the rough
estimate by a factor two to four.

Assessing your system
One way to assess your system would be to run the Flat File Gateway and monitor the growth in its output
file. However, note that the output of this gateway will be closer to that of a database gateway running in
audit mode rather than reporting mode, because all event types are written (analogous to inserted) to the
output file. Nevertheless an analysis of the output file will provide an insight into the mix of inserts and
updates encountered in a particular system. For a database gateway running in reporting mode, updates
and deletes can be largely discounted from calculations.

8 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Note : 4 byte integers within an ObjectServer will equate to larger amounts of data in the output of the
Flat File Gateway due to their representation in character format.

Use the following formula to calculate a rough annual database sizing requirement:

<inserts per day> * (<bytes per event> + (<number of report tables> * <bytes
per report table row>) * <52 weeks> * <7 days>) / <bytes per GB>

For example, using the following values:

• 10,000 inserts per day, after deduplication
• 2048 bytes per event
• 4 report tables
• 256 bytes per report table row
• 52 weeks
• journals and details not included

The annual database storage requirement would be:

(10000 * (2048 + (4 * 256)) * 52 * 7) / 1024^3 = 10.4 GB

<inserts per day> * (<bytes per event> + (<number of report tables> * <bytes
per report table row>) * <52 weeks> * <7 days>) / <bytes per GB>

Installing the gateway
There are separate procedures for installing the gateway on each version of Tivoli Netcool/OMNIbus.

Follow the procedure for the version of Tivoli Netcool/OMNIbus that your site uses.

Installing probes and gateways on Tivoli Netcool/OMNIbus V8.1
From Tivoli Netcool/OMNIbus V8.1 onwards, Tivoli Netcool/OMNIbus probes and gateways can be
installed using the IBM Installation Manager. One of the key features of Installation Manager is that all
platforms are shipped in a single ZIP file, which means that you do not have to select the platform that
you require; Installation Manager does it for you.

Before you can install a probe or gateway, you must have installed and configured Installation Manager
and Tivoli Netcool/OMNIbus. To install probes and gateways, you must make sure that the Core Tivoli
Netcool/OMNIbus features Probe Support and Gateway Support respectively are installed.

Installing probes and gateways using the Command Line Tool
To install the probe or gateway using the Command Line Tool, run the following command:

installation_manager_location/eclipse/tools/imcl -c install
com.ibm.tivoli.omnibus.integrations.integration_name -repositories
repository_containing_required_integration -installationDirectory
location_of_netcool_omnibus_install_you_are_installing_into

Where integration_name specifies the name of the probe or gateway that you want to install.

You will be prompted to agree to the terms and conditions of the license as a prerequisite for installing the
integration. If you have already reviewed the license and want to skip the manual acceptance, add the -
acceptLicense option to the install command to silently agree to the license.

The following is an example command used to install the SNMP Probe:

imcl -c install com.ibm.tivoli.omnibus.integrations.nco-p-mttrapd -
repositories /home/my_home_dir/nco-p-mttrapd_im_package -
installationDirecory /opt/IBM/tivoli/netcool

Chapter 1. Gateway for JDBC 9

Where /home/my_home_dir/nco-p-mttrapd_im_package contains the unzipped contents of the
SNMP Probe Installation Manager package.

Note : The command line tool does not add the repository permanently to the Installation Manager
instance. If you subsequently start the Installation Manager GUI, the repositories will not be present in
the Repositories dialog box.

Uninstalling probes and gateways using the Command Line Tool
To uninstall the probe or gateway using the Command Line Tool, run the following command:

installation_manager_location/eclipse/tools/imcl uninstall
com.ibm.tivoli.omnibus.integrations.integration_name -installationDirectory
location_of_netcool_omnibus_install_you_are_uninstalling_from

Where integration_name specifies the name of the probe or gateway that you want to uninstall.

The following is an example command used to uninstall the SNMP Probe:

imcl uninstall com.ibm.tivoli.omnibus.integrations.nco-p-mttrapd -
installationDirecory /opt/IBM/tivoli/netcool

Installing probes and gateways using the GUI
To install the probe or gateway using the GUI, use the following steps:

1. Unzip the IM package that contains the probe or gateway into a directory of your choosing. A file
called repository.config will appear after unzipping the IM package.

2. Start Installation Manager using the following command:

installer_path/IBMIM

Where installer_path is the path to the Installation Manager directory.
3. Perform the following menu actions to display the repository dialog box:

Files > Preferences > Repositories.
4. Use the button Add Repository in the repository dialog box to point to the repository that contains

the unzipped IM package that contains the probe or gateway. This is the repository that contains the
repository.config file.

5. Click the Install software packages icon.
6. Select the name of the probe or gateway that you want to install.
7. Click Next.
8. Click I accept when the Licensing panel appears.
9. Highlight IBM Tivoli Netcool OMNIbus in the Package Group Name field.

10. Click Next.
11. Click Next.
12. Click Install.
13. When the Install Packages panel appears indicating that you have successfully installed the probe or

gateway, click Finish.

Uninstalling probes and gateways using the GUI
To uninstall the probe or gateway, use the following steps:

1. Start Installation Manager using the following command:

installer_path/IBMIM

Where installer_path is the path to the Installation Manager directory.

10 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

2. Click the Uninstall software packages icon.
3. Select the name of the probe or gateway that you want to uninstall.
4. Click Next.
5. Click Uninstall.
6. When the Install Packages panel appears indicating that you have successfully uninstalled the probe

or gateway, click Finish.

Setting environment variables
You might have to set some environment variables to define the gateway's working environment.

Before you run the gateway on a Windows operating system, ensure that the %PATH% environment
variable contains the location of the JVM.DLL file. The default location of JVM.DLL is:

%NCHOME%/platform/win32/jre_1.x.y/jre/bin/j9vm

where x and y are determined by the version of Tivoli Netcool/OMNIbus that you are running.

Configuring communication details
To enable communication between the gateway and the ObjectServer, you must configure communication
details for the ObjectServer and the gateway using the Tivoli Netcool/OMNIbus Server Editor
(nco_xigen) and create an entry for the ObjectServer in the interfaces file ($NCHOME/etc/omni.dat).

If the ObjectServer is already configured and the gateway is to run from the same installation, you do not
need to configure communication details for the ObjectServer.

On UNIX and Linux operating systems, use the following command to start the Server Editor:

$NCHOME/omnibus/bin/nco_xigen

On Windows operating systems, use the following command to start the Server Editor:

Start > Programs > NETCOOL Suite > System Utilities > Servers Editor

You must also add a gateway server entry to the interfaces file. You can do this using the Server Editor.
Alternatively, on Unix and Linux operating systems you can edit the interfaces file and regenerate it using
the nco_igen utility. The default gateway server name is G_JDBC.

If there is a firewall between the gateway and the ObjectServer, configure the ObjectServer to use a fixed
port for IDUC and ensure that both the main ObjectServer port and the IDUC port are opened in the
firewall. By default, the ObjectServer uses a random IDUC port.

For more information about using the Server Editor and the interfaces file, see the IBM Tivoli Netcool/
OMNIbus Installation and Deployment Guide.

Configuring the database schema
Configuring the database schema involves running the appropriate audit or reporting mode SQL scripts for
the target database. The scripts provided in the audit and reporting mode libraries are designed to cover
general use cases. You will probably need to modify them to work with your database settings or to suit
your particular requirements.

The audit and reporting mode libraries contain SQL scripts that create all the database schema objects
required to store data processed by the gateway, including the tablespace, temporary tablespace,
reporter, tables (status, journal, and details), indexes, and constraints.

Use either the audit mode scripts or the reporting mode scripts to create the database schema objects, as
required. See “Audit mode and reporting mode” on page 5 for details of how the gateway operates in each
mode.

Chapter 1. Gateway for JDBC 11

Running the scripts
The installed scripts are located in subdirectories of the $OMNIHOME/gates/audit and $OMNIHOME/
gates/reporting directories, named for the target database that they configure. For example, the
scripts for IBM DB2 are located in the $OMNIHOME/gates/audit/db2 and $OMNIHOME/gates/
reporting/db2 subdirectories.

Before running the scripts, you should consult your database documentation for instructions about how
your database uses SQL scripts. You should also refer to the readme files in the script libraries and the
comments in the script files for details of any limitations or constraints specific to individual scripts.

Migrating from an existing gateway
If you are using the Gateway for JDBC as a replacement for the Gateway for Oracle or the Gateway for
ODBC, your existing target database configuration might not require any changes. In these cases, there is
no need to run the database schema scripts.

Migrating from an existing target database should be done during a quiet period for the ObjectServer. This
will ensure that the minimum number of events are lost for archiving while the gateway is not active.

Before migrating from an existing target database, perform a correct shut down of the old gateway to
ensure that existing data is forwarded to the new gateway. The new gateway will perform a
resynchronization of events from the ObjectServer, so problems with the old gateway shut down should
not result in loss of data. However, resynchronization may result in duplicate event data and subsequent
error messages if constraint violations in the target database are triggered.

Persistent state
The Gateway for JDBC is designed to facilitate migration from an existing database gateway installation.
As it is not practical to migrate the persistent state from an existing database gateway, the Gateway for
JDBC has no persistent state by default, unlike the ODBC and Oracle gateways. The Gateway for JDBC
seeds its state from the target database before doing further resynchronization. This should prevent
existing INSERT alerts from being inserted on resynchronization and instead the alerts should be
correctly marked as UPDATE.

Alerts are pulled from the target database that are considered open. In reporting mode, open means the
DELETEDAT field is null. This initial bidirectional resynchronization only happens when the Gateway for
JDBC determines it has no state. The gateway determines it has no state when the alert count in the
cache is 0.

Subsequent resynchronization should not perform a bidirectional resynchronization once there are alerts
in the cache.

To replicate the existing Oracle or ODBC gateway functionality of not performing bidirectional
resynchronization, you must set the Gateway for JDBC property Gate.Jdbc.ResyncMode to "UNI". For
further information about this property see “Properties and command line options” on page 28.

Bidirectional resynchronization
The first time you run the gateway, it will detect that there are no alerts in its cache and it will perform a
bidirectional resynchronization. This will detect any events in the target database that were still open
when the old gateway was last run, and that have subsequently been closed and deleted from the
ObjectServer. This enables event deletes that were lost while the gateway was being migrated to be
recovered to the target database. On subsequent runs, when there are alerts in its cache, the gateway will
perform a unidirectional resynchronization on startup.

Note : Bidirectional resynchronization results in full table scans on the target database status table. The
amount of time required for the resynchronization to finish is proportional to the size of the database
table. A large amount of event history will result in a long resynchronization.

12 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Configuring the database connection
Configuring the database connection involves configuring the JDBC driver and specifying values for the
connection-related properties.

JDBC drivers
You must obtain the JDBC driver for the target database from the database vendor and install it according
to the vendor's instructions. The drivers are usually provided as Java archives (.jar).

You must copy the JDBC driver .jar file to the following directory:

$OMNIHOME/gates/java

Database connection properties
To enable the gateway to communicate with the target database, you must specify values for the following
properties:

• Gate.Jdbc.Connections

This property specifies the number of connections that the gateway makes to the target database.
Increasing the number of connections increases the level of parallelism available to the gateway and
potentially increases performance. Start with low values and increase as needed to find the desired
performance level.

• Gate.Jdbc.Driver

This property specifies the JDBC driver. If the Gate.Jdbc.Driver property is left empty (the default),
then the internal null JDBC driver is used. This internal JDBC driver is used for testing purposes to allow
the generic portions of the gateway to be run without requiring a database connection to be configured.
The null JDBC driver also simulates error insertion and row updating in order to test the error handling
code of the gateway. The null JDBC driver is also useful for enabling users to familiarize themselves with
the gateway operations before committing updates to their target database. It can be run in parallel to
an existing database gateway, to allow this familiarization to be done without downtime of the existing
gateway.

Running the gateway in debug log level allows you to see the logging produced by the gateway and to
inspect the resulting SQL that would have been sent to their target database.

Note : The JDBC gateway persistent state should be deleted after running in test mode to delete alert
history used for de-duplication.

• Gate.Jdbc.Url

This property specifies the URL of the target database.
• Gate.Jdbc.Username

This property specifies the user name for the target database.
• Gate.Jdbc.Password

This property specifies the password for the target database.

The following table lists example values for the Gate.Jdbc.Driver and Gate.Jdbc.Url properties for
use with each database. Consult your driver documentation for more information about setting up
database connections. Default values may be different depending on your setup.

Table 6. Example JDBC property values

DB2 LUW

Gate.Jdbc.Driver com.ibm.db2.jcc.DB2Driver

Chapter 1. Gateway for JDBC 13

Table 6. Example JDBC property values (continued)

Gate.Jdbc.Url jdbc:db2://host_name:port/db_name

Where host_name is the name of the database host machine,
port is the port number, and db_name is the name of the
database. For example:

jdbc:db2://server.example.ibm.com:9999/
REPORTER

DB2 z/OS

Gate.Jdbc.Driver com.ibm.db2.jcc.DB2Driver

Gate.Jdbc.Url jdbc:db2://host_name:port/db_name

Where host_name is the name of the database host machine,
port is the port number, and db_name is the name of the
database. For example:

jdbc:db2://server.example.ibm.com:9999/
REPORTER

Informix

Gate.Jdbc.Driver com.informix.jdbc.IfxDriver

Gate.Jdbc.Url jdbc:informix-sqli://host_name:port/
db_name:INFORMIXSERVER=server_name

Where host_name is the name of the database host machine,
port is the port number, db_name is the name of the database,
and server_name is the same as the host_name. For example:

jdbc:informix-sqli://
server.example.ibm.com:1433/
REPORTER:INFORMIXSERVER=server.example.ibm.com

Microsoft SQL Server

Gate.Jdbc.Driver com.microsoft.sqlserver.jdbc.SQLServerDriver

Gate.Jdbc.Url jdbc:sqlserver://
host_name:port;databaseName=db_name;instanceNa
me=instance_name;encrypt=false

Where host_name is the name of the database host machine,
port is the port number, and db_name is the name of the
database, `instance_name specifies the instance name of the
database and encrypt specifies if encryption is enabled for the
database. Both instance_name and encrypt are optional and
may be omitted if default values are used to connect to the
database. For more details on additional parameters that can
be specified, please refer to the Microsoft JDBC Driver for SQL
Server website.. The default port is 1433. For example:

jdbc:sqlserver://
server.example.ibm.com:1433;databaseName=REPOR
TER;instanceName=MSSQLSERVER;encrypt=false

14 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Table 6. Example JDBC property values (continued)

MySQL

Gate.Jdbc.Driver com.mysql.cj.jdbc.Driver

Gate.Jdbc.Url jdbc:mysql://host_name[,failover_host]:port/
db_name[?param1=value1¶m2=value2]

Where host_name is the name of the database host machine,
failover_host is the name of the optional failover host, port is
the port number, db_name is the name of the database, and
param1 and param2 are optional parameters. The default port
is 3306. For example:

jdbc:mysql://server.example.ibm.com:3306/
alerts

Oracle

Gate.Jdbc.Driver oracle.jdbc.driver.OracleDriver

Gate.Jdbc.Url jdbc:oracle:thin:@host_name:port:db_name

Where host_name is the name of the database host machine,
port is the port number, and db_name is the name of the
database. The default port is 1521. For example:

jdbc:oracle:thin:@server.example.ibm.com:1521:
REPORTER

Sybase

Gate.Jdbc.Driver com.sybase.jdbc4.jdbc.SybDriver

Gate.Jdbc.Url jdbc:sybase:Tds:host_name:port/db_name[?
property=value;]

Where host_name is the name of the database host machine,
port is the port number, db_name is the name of the database,
and property is an optional parameter. For example:

jdbc:sybase:Tds:server.example.ibm.com:1521/
REPORTER

Netezza

Gate.Jdbc.Driver org.netezza.Driver

Gate.Jdbc.Url jdbc:netezza://host_name:port/db_name

Where host_name is the name of the database host machine,
port is the port number, and db_name is the name of the
database. For example:

jdbc:netezza://server.example.ibm.com:5480/
ALERTS

Chapter 1. Gateway for JDBC 15

Integrating with an Oracle database
This topic describes how to create and configure an Oracle database to integrate it with Netcool/
OMNIbus.

Integrating the JDBC Gateway with Oracle requires the following steps:

• “Step 1: Setting up the environment variables” on page 16
• “Step 2: Preparing an Oracle parameters file” on page 16
• “Step 3: Creating a binary parameter file” on page 17
• “Step 4: Creating a database instance” on page 17
• “Step 5: Building the Data Dictionary Views” on page 18
• “Step 6: Preparing a table for the Netcool integration” on page 18
• “Step 7: Creating a password file” on page 19
• “Step 8: Updating the tnsnames.ora file” on page 21

Note : The steps in this procedure should be run by the user oracle, which is created during the Oracle
installation.

Step 1: Setting up the environment variables
Update the .bash_profile of the user oracle using the following command:

export ORACLE_SID=ortestdb

Where ortestdb is your database instance name.

ORACLE_HOME and ORACLE_SID have been configured for user oracle.

To check, run the following command:

"env | grep ORACLE"

ORACLE_SID holds the name of the database instance. To create a new instance, or to use an existing
instance, the environment variable must be updated first.

Step 2: Preparing an Oracle parameters file
Update the following parameters in the $ORACLE_HOME/dbs/init.ora file.

db_name='ortestdb'
memory_target=1G
processes = 150
audit_file_dest='/opt/oracle_BASE/test1/admin/orcl/adump'
audit_trail ='db'
db_block_size=8192
db_domain='my.ibm.com'
db_create_file_dest='/opt/oracle_BASE/test1/oradata'
db_create_online_log_dest_1='/opt/oracle_BASE/test1/u02/oradata'
db_create_online_log_dest_2='/opt/oracle_BASE/test1/u03/oradata'
db_recovery_file_dest='/opt/oracle_BASE/test1/fast_recovery_area'
db_recovery_file_dest_size=2G
diagnostic_dest='/opt/oracle_BASE/test1'
dispatchers='(PROTOCOL=TCP) (SERVICE=ORCLXDB)'
open_cursors=300
remote_login_passwordfile='EXCLUSIVE'
undo_tablespace='UNDOTBSP'
You may want to ensure that control files are created on separate physical
devices
control_files = (/opt/oracle_BASE/test1/ctl/u01/prod/control01.ctl,
 /opt/oracle_BASE/test1/ctl/u01/prod/control02.ctl,
 /opt/oracle_BASE/test1/ctl/u01/prod/control03.ctl)
compatible ='12.0.0'
OS_AUTHENT_PREFIX=""

16 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Note:

db_name is the name of the database instance held by ORACLE_SID.

db_domain is the domain of the server.

undo_tablespace must be set to 'UNDOTBSP'

/opt/oracle_BASE and the sub-directories (before the file names) shown in the sample init.ora
must be staged before running the CREATE SPFILE command.

It is better to create a bash script for directory creation.

For staging directories, perform the following steps:

1. As root, set full permissions (apply chmod 777) to /opt/oracle_BASE.
2. Use user oracle to create the sub-directories.

You can use a name other than oracle_BASE, but do not use $ORACLE_HOME as the parent directory to
the storage location of the database instance files, this is to ease resource management of the database
instances. For example, if Step 3 hit errors, you can remove all files under /opt/oracle_BASE/test1
before rerunning Step 3.

The CREATE DATABASE command will look for init<ORACLE_SID>.ora. If the CREATE DATABASE
<ORACLE_SID> command fails reporting: file not found, rename it init.ora to
init<ORACLE_SID>.ora (for example initortestdb.ora).

Step 3: Creating a binary parameter file
Run the following command:

SQL> CREATE SPFILE FROM PFILE;

Verify the creation of the $ORACLE_HOME/dbs/spfile<ORACLE_SID>.ora file.

Note : Do not use a text editor to amend the spfile<ORACLE_SID>.ora file. Consult the Oracle
documentation for the appropriate editing procedure.

Step 4: Creating a database instance
To create a database instance, use the following steps:

1. Run the following command to connect to an idle instance:

[oracle@klxv0104 bin]$./sqlplus / as sysdba

2. Run the following command:

SQL> CREATE SPFILE FROM PFILE;

This creates the following file: $ORACLE_HOME/dbs/spfileortestdb.ora
3. Run the following command to start the Oracle instance:

SQL> STARTUP NOMOUNT;

4. Run the following command to create the Oracle database:

SQL> CREATE DATABASE ortestdb USER SYS IDENTIFIED BY sys_pass USER SYSTEM IDENTIFIED BY
system_pass EXTENT MANAGEMENT LOCAL DEFAULT TEMPORARY TABLESPACE temp UNDO TABLESPACE
UNDOTBSP DEFAULT TABLESPACE users;

Note :

Chapter 1. Gateway for JDBC 17

The command example in the Oracle document uses a different name for undo table, the value in the
command shown here uses UNDOTBSP, which agrees with the undo_tablespace parameter in the
init.ora file. (See the note in “Step 2: Preparing an Oracle parameters file” on page 16).

Verify the database instance file location for the files created.

If the CREATE DATABASE command failed at some point, before rerunning the step, perform the
following steps:

a. Exit the NOMOUNT state: SHUTDOWN IMMEDIATE
b. Clean up the db_instance folder specified in init.ora (see “Step 2: Preparing an Oracle

parameters file” on page 16).

For the following steps, pass in the designated paths of your setup as the command argument. The
path must be staged beforehand.

5. Run the following command to create the tablespace apps_tbs.

SQL> CREATE TABLESPACE apps_tbs LOGGING DATAFILE '/opt/oracle_BASE/test1/oradata/ORTESTDB/
datafile/apps01.dbf' SIZE 500M REUSE AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED EXTENT
MANAGEMENT LOCAL;

6. Run the following command to create the tablespace indx_tbs.:

SQL> CREATE TABLESPACE indx_tbs LOGGING DATAFILE '/opt/oracle_BASE/test1/oradata/ORTESTDB/
datafile/indx01.dbf' SIZE 100M REUSE AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED EXTENT
MANAGEMENT LOCAL;

Step 5: Building the Data Dictionary Views
Before starting, the database instance created previously must be in OPEN state.

To build data dictionary views, perform the following steps:

1. Log in as SYSDBA.
2. Run the following command to start the database in OPEN state:

SQL> STARTUP OPEN;

3. Run the following command to check the instance status:

SQL> select INSTANCE_NAME, STATUS from v$instance;

4. As SYSDBA, run the following scripts in the order shown:

@?/rdbms/admin/catalog.sql
@?/rdbms/admin/catproc.sql
@?/rdbms/admin/utlrp.sql

5. Connect as SYSTEM at the SQL prompt, log in with the SYSTEM password specified in the CREATE
DATABASE command:

SQL> connect system

6. Run the following command:

SQL> @?/sqlplus/admin/pupbld.sql

Note : You can safely ignore the DROP errors displayed while the SQL is executing.

Step 6: Preparing a table for the Netcool integration
Preparing REPORTER mode:

Use the scripts bundled in the nco-g-jdbc-reporting-script package.

18 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Run the following SQL at the SQL prompt:

SQL>@<path>/oracle.reporting.sql

For example:

SQL> @/tmp/netcool_ora_sql_scripts/reporting_scripts/oracle.reporting.sql

Check that the table and the tablespace were created correctly:

SQL> select owner, table_name from all_tables where tablespace_name='REPORTER';

Preparing AUDIT mode:

Use the scripts bundled in nco-g-jdbc-audit-script package.

1. Modify the orainstall script:

a. Change the availability check in create_tables.audit.sql:

if [! -f $OMNIHOME/gates/nco_g_oracle/sql_scripts/create_tables.audit.sql];

to

if [! -f ./create_tables.audit.sql];

b. Change the location of the create_tables.audit.sql file.

Comment out:

#cat $OMNIHOME/gates/nco_g_oracle/sql_scripts/$INPUT_SQL_FILE | sed -e "s/__TABLESPACE__/
$TABLESPACE/g" -e "s/__STATUS__/$STATUSTAB/g" -e "s/__JOURNAL__/$JOURNALTAB/g" -e "s/
__DETAILS__/$DETAILSTAB/g" -e "s/__STORAGE__/$STORAGEOPT/g" >> /tmp/nco_oracle.sql

Add the following code:

cat ./$INPUT_SQL_FILE | sed -e "s/__TABLESPACE__/$TABLESPACE/g" -e "s/__STATUS__/
$STATUSTAB/g" -e "s/__JOURNAL__/$JOURNALTAB/g" -e "s/__DETAILS__/$DETAILSTAB/g" -e "s/
__STORAGE__/$STORAGEOPT/g" >> /tmp/nco_oracle.sql

2. Run orainstall to generate the audit script from the template create_tables.audit.sql file.

Note : Run orainstall from the same directory storing the audit SQL scripts.

./orainstall

This creates the /tmp/nco_oracle.sql script.
3. Run the nco_oracle.sql script.

SQL> @/tmp/netcool_ora_sql_scripts/audit_scripts/nco_oracle.sql

4. Verify that the tables were created by nco_oracle.sql:

SQL> select TABLE_NAME from all_tables where TABLESPACE_NAME='SYSTEM' and
(TABLE_NAME='STATUS' or TABLE_NAME='JOURNAL' or TABLE_NAME='DETAILS');

Step 7: Creating a password file
This step is only required if users other than the one specified in the table creation scripts in “Step 6:
Preparing a table for the Netcool integration” on page 18 were specified.

To create the password file, perform the following steps:

1. Check the password file:

Chapter 1. Gateway for JDBC 19

SQL> select username, from v$pwfile_users;

Note: The default directory where the password file is located is: $ORACLE_HOME/dbs/orapw
$ORACLE_SID

2. If the password file is empty or does not exist, create it now:

cd $ORACLE_HOME/bin
./orapwd FILE=/opt/oracle/product/19c/dbhome_1 /dbs/orapwortestdb ENTRIES=30
PASSWORD=<password of SYS>

Note:

FILE = $ORACLE_HOME/dbs/orapw$ORACLE_SID

PASSWORD = SYS password should comply to password requirements (for example, username should
not be a substring, and contain at least one numeric and one special character)

If not specified, the password prompt will appear for input.

ENTRIES = the maximum number of distinct SYSDBA, SYSOPER, SYSASM, SYSKM, SYSDG or
SYSBACKUP users that can be stored in the password file.

Important:

The password should be set to PASSWORD or the password prompt will override the password
originally specified in the CREATE DATABASE command.

The password update can be verified using the attempt to connect by the following command:

SQL> connect sys as sysdba

To update the SYS password, use following command:

SQL> ALTER USER sys IDENTIFIED BY "<password>";

To use the SYS user to connect to the Oracle database, check whether SYS is in the password file using
the following command:

SQL> select * from v$pwfile_users;

3. Grant the appropriate role to the user.

a. Create the Oracle user by running the following command:

SQL> CREATE USER <user> IDENTIFIED BY <password>;

For example:

SQL> CREATE USER jdbcgwoper IDENTIFIED BY jdbcgwoper_pass;

b. Grant a role to user by running the following command:

SQL> grant <role> to <user>;

For example:

SQL> grant sysoper to jdbcgwoper;

c. Verify the user’s role by running the following command:

SQL> select SYSDBA, SYSOPER, SYSASM, SYSBACKUP, SYSDG, SYSKM from v$pwfile_users where
USERNAME='SYS';

20 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Step 8: Updating the tnsnames.ora file
You may get the following error when connecting JDBC to Oracle database:

2020-05-07T23:27:36: Error: E-GJA-000-000: [ngjava]: G_JDBC: Thread-7: Listener refused the
connection with the following error:
ORA-12504, TNS:listener was not given the SID in CONNECT_DATA

2020-05-07T23:27:36: Error: E-GJA-000-000: [ngjava]: G_JDBC: Thread-7: java.sql.SQLException:
Listener refused the connection with the following error:
ORA-12504, TNS:listener was not given the SID in CONNECT_DATA

If so, use the following steps:

1. Update $ORACLE_HOME/network/admin/tnsnames.ora to include the SID in the CONNECT_DATA
definition:

ORCLCDB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = <hostname>)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = ORCLCDB)
 (SID = ortestdb)
)
)

LISTENER_ORCLCDB =
 (ADDRESS = (PROTOCOL = TCP)(HOST = <hostname>)(PORT = 1521))

2. Start the listener using the following commands:

$ORACLE_HOME/bin/lsnrctl start
$ORACLE_HOME/bin/lsnrctl status

Integrating with a Microsoft SQL Server database
This topic describes how to create and configure a Microsoft SQL Server database to integrate it with
Netcool/OMNIbus.

The JDBC Gateway requires the Microsoft JDBC Driver for SQL Server to integrate with Microsoft SQL
Server. The JDBC driver can be downloaded at the Microsoft JDBC Driver for SQL Server website.

The JDBC Gateway can integrate with the Microsoft SQL Server using either a secure or a non-secure
connection. However, the JDBC Gateway will always authenticate using a secure connection. When the
JDBC Gateway begins to connect with Microsoft SQL Server, a secure (TLS) connection is initiated and the
expected process of a TLS handshake occurs. Once the handshake is completed successfully, the JDBC
Gateway authenticates with Microsoft SQL Server using the provided user credentials. Once the
authentication is completed successfully, subsequent communication with Microsoft SQL Server will be
performed using either a secure or non-secure connection as per the gateway configuration.

To integrating the JDBC Gateway with Microsoft SQL Server, use the following steps:

• “Step 1: Installing the Microsoft JDBC Driver” on page 21
• “Step 2: Preparing tables for Netcool integration” on page 22
• “Step 3: Configuring the gateway” on page 22

Step 1: Installing the Microsoft JDBC Driver
For OMNIbus installations using JRE 1.7, install the JRE 1.7 version of the JDBC driver. Otherwise for
OMNIbus installations using JRE 1.8, install the JRE 1.8 version of the JDBC driver instead. Refer to the
Microsoft JDBC Driver for SQL Server Support Matrix website for more information on the currently
supported driver versions.

Copy the Microsoft JDBC Driver for example, mssql-jdbc-8.2.2.jre8.jar to the $OMNIHOME/
gates/java directory. Alternatively, the JDBC driver may be copied to the directory defined in

Chapter 1. Gateway for JDBC 21

Gate.Java.ClassPath in the properties file. Ensure that only one copy of the JDBC Driver is installed in
the directory.

Step 2: Preparing tables for Netcool integration
Preparing REPORTER mode:

Use the scripts bundled in the nco-g-jdbc-reporting-scripts package under the directory mssql.

At the command prompt, navigate to the mssql directory and run the following command to create the
REPORTER tables in your database:

> sqlcmd -S sqlserver -U netcool -P password -i mssql.reporting.sql

Where sqlserver is the database name, netcool is the username, password is the password for the
netcool user and mssql.reporting.sql is the database script to execute.

You may check that the tables have been created using the following command:

> sqlcmd -S sqlserver -U netcool -P password
1> select table_name from REPORTER.information_schema.tables;
2> go

Preparing AUDIT mode:

Use the scripts bundled in the nco-g-jdbc-audit-scripts package under the directory mssql.

In the command prompt, navigate to the mssql directory and run the following command to create the
AUDIT tables in your database:

> sqlcmd -S sqlserver -U netcool -P password -i mssql.sql

Where sqlserver is the database name, netcool is the username, password is the password for the
netcool user and mssql.sql is the database script to execute.

You can check that the tables have been created using the following command:

>
1> select table_name from information_schema.tables;
2> go

Step 3: Configuring the gateway
Note: Microsoft SQL Server 2016 and higher versions strictly require clients to securely connect using TLS
v1.2 or higher. To ensure that the JDBC Gateway always initiates a TLS connection using TLS v1.2 or
higher, the following argument must be specified in the gateway properties file:

Gate.Java.Arguments: ‘-Dcom.ibm.jsse2.overrideDefaultTLS=true’

Specify the correct mode to be used namely, AUDIT or REPORTING:

Gate.Jdbc.Mode: 'REPORTING' # STRING (JDBC gateway mode (AUDIT|REPORTING))

Specify the JDBC connection properties:

Gate.Jdbc.Driver: 'com.microsoft.sqlserver.jdbc.SQLServerDriver' # STRING (JDBC Driver)
Gate.Jdbc.Url: 'jdbc:sqlserver://<hostname or IP address of Microsoft SQL
Server>:1433;databaseName=REPORTER' # STRING (JDBC connection URL)
Gate.Jdbc.Username: 'netcool' # STRING (JDBC username)
Gate.Jdbc.Password: 'password' # STRING (JDBC password)

In the above example, the gateway is configured to connect to the REPORTER database using the user
netcool.

22 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Additional parameters can be specified as needed. In the following example the connection URL specifies
the instance name and that a non-secure connection should be used:

Gate.Jdbc.Url: 'jdbc:sqlserver://<hostname or IP address of Microsoft SQL
Server>:1433;databaseName=REPORTER;instanceName=MSSQLSERVER;encrypt=false' # STRING (JDBC
connection URL)

If a secure connection is required to be used by the gateway, the following should be configured:

Gate.Java.Arguments: ‘-Dcom.ibm.jsse2.overrideDefaultTLS=true -Djavax.net.ssl.trustStore=<path
to truststore file> -Djavax.net.ssl.trustStorePassword=<truststore file password>’
Gate.Jdbc.Url: 'jdbc:sqlserver://<hostname or IP address of Microsoft SQL
Server>:1433;databaseName=REPORTER;instanceName=MSSQLSERVER;encrypt=true' # STRING (JDBC
connection URL)

Integrating with a DB2 database
This topic describes how to create and configure a DB2 database to integrate it with Netcool/OMNIbus.

To integrating the JDBC Gateway with Microsoft SQL Server, use the following steps:

• “Step 1: Setting up the environment variables” on page 23
• “Step 2: Preparing tables for Netcool integration” on page 23
• “Step 3: Configuring DB2 parameters” on page 24

Step 1: Setting up the environment variables
Install DB2 software. Follow steps provided on the product user guide.

Step 2: Preparing tables for Netcool integration
Preparing REPORTER mode:

Use the scripts bundled in the nco-g-jdbc-reporting-scripts package.

1. Create database REPORTER:

For example, run the following command:

db2 create database reporter

2. Modify the db2.reporting.sql script:

a. Uncomment the CREATE DATABASE line.
b. Set the default user name and password to match the DB2 installation:

 CREATE DATABASE reporter @.
 CONNECT TO reporter USER db2inst1 USING db2inst1

c. Uncomment the following lines, so that any association journal and details rows are deleted from
the database when the corresponding alert are deleted.

For example:

-- Uncomment the line below to enable foreign keys
-- This helps pruning by only requiring the alert to be
-- deleted from the status table
, CONSTRAINT eventref FOREIGN KEY (SERVERNAME, SERVERSERIAL) REFERENCES
REPORTER_STATUS(SERVERNAME, SERVERSERIAL) ON DELETE CASCADE

Note : This SQL appears twice in the SQL file: once in the details table definition and once in the
journal table definition. Uncomment both instances.

Chapter 1. Gateway for JDBC 23

3. Run the SQL file against the DB2 database by running the following command as the db2inst1 system
user:

$ db2 -td@ -vf db2.reporting.sql

Preparing AUDIT mode:

Use the scripts bundled in the nco-g-jdbc-audit-scripts package.

Run the SQL files in order against the DB2 database by running the following commands as the db2inst1
system user:

 $ db2 -td@ -vf db2_status.sql
 $ db2 -td@ -vf db2_journal.sql
 $ db2 -td@ -vf db2_details.sql

Step 3: Configuring DB2 parameters
Run db2stop before updating DB2 parameters to prevent issues caused by the security parameters
being incompatible with the original settings that db2start was running with.

Updates in the DB2 parameters will take effect after db2start is run successfully.

Configure DB2 parameters for plaintext user and password authentication

db2 update dbm cfg using SRVCON_GSSPLUGIN_LIST NULL
db2 update dbm cfg using AUTHENTICATION SERVER

Configure DB2 parameters for Kerberos Authentication

db2set DB2ENVLIST=KRB5_KTNAME
db2 update dbm cfg using SRVCON_GSSPLUGIN_LIST IBMkrb5
db2 update dbm cfg using AUTHENTICATION KERBEROS

Note: KRB5_KTNAME is an environment variable pointing to the server principal’s keytab file.

Configure DB2 parameters for SSL connection

db2 update dbm cfg using SSL_SVR_KEYDB <db2_ssl_keydb.kdb>
db2 update dbm cfg using SSL_SVR_STASH <db2_ssl_keydb.sth>
db2 update dbm cfg using SSL_SVR_LABEL IBM_CA_signed
db2 update dbm cfg using SSL_SVCENAME <port>

Integrating with a MySQL Server database
This topic describes how to create and configure a MySQL Server database to integrate it with Netcool/
OMNIbus.

To integrating the JDBC Gateway with MySQL Server, use the following steps:

• “Step 1: Installing the MySQL JDBC Driver” on page 24
• “Step 2: Preparing tables for Netcool integration” on page 24
• “Step 3: Configuring the gateway” on page 25

Step 1: Installing the MySQL JDBC Driver
Refer to the MySQL website for more information on the currently supported driver versions.

Copy the MySQL JDBC Driver for example, mysql-connector-java-8.0.20.jar to the $OMNIHOME/
gates/java directory.

Step 2: Preparing tables for Netcool integration
Preparing AUDIT mode:

24 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Use the scripts bundled in the nco-g-jdbc-audit-scripts package under the directory mysql.

In the command prompt, navigate to the mysql directory and run the following command to create the
AUDIT tables in your database:

> run ./mysqlinstall

Run mysqlinstall to install the database tables.

You can check that the tables have been created using the following command:

Login to mysql -u <user_name> -p <password>
 mysql> show databases;
 mysql> use alerts;
 mysql> show tables;

Note : Mysql is only supported in AUDIT Mode.

Step 3: Configuring the gateway
Specify the correct mode to be used (namely, AUDIT):

Gate.Jdbc.Mode: 'AUDIT' # STRING (JDBC gateway mode (AUDIT|REPORTING))

Specify the JDBC connection properties:

Gate.Jdbc.Driver: 'com.mysql.cj.jdbc.Driver' # STRING (JDBC Driver)
Gate.Jdbc.Url: 'jdbc:mysql://<hostname or IP address of the MySQL Server>:3306/alerts' # STRING
(JDBC connection URL)
Gate.Jdbc.Username: 'netcool' # STRING (JDBC username)
Gate.Jdbc.Password: 'password' # STRING (JDBC password)

In the above example, the gateway is configured to connect to the ALERTS database using the user
netcool.

If a secure connection is required to be used by the gateway, the following should be configured:

Gate.Java.Arguments: ‘-Djavax.net.ssl.trustStore=<path to truststore file> -
Djavax.net.ssl.trustStorePassword=<truststore file password>' # STRING (JDBC connection URL)

Configuring SSL connections
If you are using an HTTPS/SSL connection between the gateway and the target database, you must create
a truststore to store the JDBC digital certificate and point the gateway to the location of the truststore.

You can generate the truststore file using the Java keytool utility. The keytool utility is located in the
following directory:

$OMNIHOME/platform/arch/jre_directory/jre/bin/

Where arch is the operating system you are running and jre_directory is the installation directory of your
Java Runtime Environment (JRE).

Use the following steps to enable SSL connections between the gateway and JDBC:

1. Obtain the JDBC certificate files.

Note : You must obtain the CA root certificate and any intermediate CA certificates that your JDBC
configuration uses.

2. Use the Java keytool utility to create a truststore and password.
3. Add the JDBC SSL certificate to the truststore.

For example, run the following keytool command from the $NCHOME/platform/arch/
jre_version/bin directory to import the certificate and create the keystore:

Chapter 1. Gateway for JDBC 25

keytool -import -trustcacerts -alias CAROOTCERT -file PATH_TO_CERTIFICATE
CA.cer -keystore $NCHOME/etc/security/jdbccerts

Note : You will be prompted to create a truststore password.
4. Update the Gate.Jdbc.Url property to include the URL location.

For example:

'jdbc:db2://targethost:50004/REPORTER:sslConnection=true;
sslTrustStoreLocation=/netcool/etc/cert/cacerts;'

Note : The targethost variable must match the hostname specified in the JDBC server certificate.
5. Update the Gate.Java.Arguments property to include the following arguments:

• -Djavax.net.ssl.trustStore=truststore_path

Where truststore_path is the full path and name of the truststore file.
• -Djavax.net.ssl.trustStorePassword=truststore_password

For example:

Gate.Java.Arguments : '-Djavax.net.ssl.trustStore=/opt/IBM/tivoli/netcool/
platform/arch/jre_1.6.7/jre/lib/security/jdbccerts -
Djavax.net.ssl.trustStorePassword=changeit'

Note : The Gate.Java.Arguments property can be encrypted to hide the trust store password from
casual inspection.

Configuring the gateway
After installing the gateway, you must configure it to work with your operating environment.

The gateway installation package contains the configuration files required to run the gateway. The default
configuration files configure the gateway for operation in reporting mode.

The following table lists the configuration files installed with the gateway installation package.

Table 7. Gateway configuration files

Configuration file Description

$OMNIHOME/etc/G_JDBC.props The default properties file used by the gateway. This file
configures the gateway for operation in reporting mode.

$OMNIHOME/gates/jdbc/
audit.G_JDBC.props

The properties file used to configure the gateway for
operation in audit mode.

$OMNIHOME/gates/jdbc/
audit.jdbc.map

The map definition file used to configure the gateway for
operation in audit mode.

$OMNIHOME/gates/jdbc/
G_JDBC.props

A copy of the default properties file used by the gateway.
This file configures the gateway for operation in reporting
mode.

$OMNIHOME/gates/jdbc/jdbc.map The default map definition file used by the gateway. This
file configures the gateway for operation in reporting
mode.

$OMNIHOME/gates/jdbc/
jdbc.rdrwtr.tblrep.def

The default table replication definition file used by the
gateway.

26 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Table 7. Gateway configuration files (continued)

Configuration file Description

$OMNIHOME/gates/jdbc/
jdbc.startup.cmd

The default startup command file used by the gateway.

$OMNIHOME/gates/jdbc/
reporting.G_JDBC.props

The properties file used to configure the gateway for
operation in reporting mode. It is identical to the default
properties file G_JDBC.props.

$OMNIHOME/gates/jdbc/
reporting.jdbc.map

The map definition file used to configure the gateway for
operation in reporting mode. It is identical to the default
map definition file jdbc.map.

$OMNIHOME/gates/jdbc/
jdbc_conn.properties

The file contains sample JDBC parameters for Oracle and
DB2 connections.

$OMNIHOME/gates/jdbc/
jdbc_javasys.properties

The file contains sample Java system properties for Oracle
and DB2 connections.

$OMNIHOME/gates/jdbc/jaas.conf The file contains sample JAAS client configuration used in
Kerberos-authenticated database connections.

The following topics contain more information about configuring the gateway.

• “Properties file” on page 27
• “Properties and command line options” on page 28
• “Map definition file” on page 46
• “Startup command file” on page 46
• “AfterIDUC and Filter functions” on page 49
• “Using a partitioning field” on page 50
• “Filtering resynchronization data” on page 50
• “Message log file” on page 51
• “FIPS mode and encryption” on page 52

For more information about using gateway configuration files, see the IBM Tivoli Netcool/OMNIbus Probe
and Gateway Guide.

Properties file
The properties file is a text file that contains a set of gateway-specific and generic Tivoli Netcool/OMNIbus
properties and their corresponding values. You can edit the properties file to suit your operating
environment.

The default properties file installed with the gateway, $OMNIHOME/etc/G_JDBC.props, configures the
gateway to operate in reporting mode.

To configure the gateway to operate in audit mode, use the following steps:

1. Copy $OMNIHOME/gates/jdbc/audit.G_JDBC.props to $OMNIHOME/etc/G_JDBC.props.
2. Copy $OMNIHOME/gates/jdbc/audit.jdbc.map to $OMNIHOME/gates/jdbc/jdbc.map.

Chapter 1. Gateway for JDBC 27

Properties and command line options
You use properties to define the operational environment of the gateway. You can override the default
property values by editing the properties file or using the property's command line options.

The following tables describe the main properties required to configure the Gateway for JDBC. For
information about additional generic Tivoli Netcool/OMNIbus gateway properties and command line
options, see the IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide.

The following sections describe the properties used to configure the gateway:

• “Common Tivoli Netcool/OMNIbus properties” on page 28
• “JDBC Gateway properties” on page 30
• “Generic gateway properties” on page 36
• “Java properties” on page 38
• “Mapping properties” on page 38
• “Gateway Reader-Writer properties” on page 39
• “Connection properties” on page 43

Common Tivoli Netcool/OMNIbus properties
The Common Tivoli Netcool/OMNIbus lists the available common properties.

Table 8. Common Tivoli Netcool/OMNIbus properties

Property name Command line option Description

ConfigCryptoAlg
string

-configcryptoalg
string

Use this property to specify the encryption
algorithm that the gateway uses.

Use this property in conjunction with the
ConfigKeyFile property and the
nco_aes_crypt utility supplied with Tivoli
Netcool/OMNIbus.

The default is AES.

ConfigKeyFile string -configkeyfile string Use this property to specify the encryption key
used with the encrypted data.

Use this property in conjunction with the
ConfigCryptoAlg property and the
nco_aes_crypt utility supplied with Tivoli
Netcool/OMNIbus.

The default is "".

Connections integer -connections integer Use this property to specify the maximum number
of client connections that can be made to the
gateway server.

The default is 30.

MaxLogFileSize
integer

-maxlogfilesize
integer

Use this property to specify the size (in bytes) that
the gateway allocates for the log file. When the log
file reaches this size, the gateway renames the log
file by appending the suffix .old and creates a
new log file.

The default is 1024.

28 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Table 8. Common Tivoli Netcool/OMNIbus properties (continued)

Property name Command line option Description

MessageLevel string -messagelevel string Use this property to specify the reporting level of
the log file messages.

The default is warn.

MessageLog string -messagelog string Use this property to specify the location of the
message log file.

The default is '$OMNIHOME/log/G_JDBC.log'.

Name string -name string Use this property to specify the name of the
current gateway instance. If you want to run
multiple gateways on one machine, you must use a
different name for each instance.

The default is 'G_JDBC'.

Props.CheckNames
boolean

No command line
equivalent.

Use this property to instruct the gateway to shut
down if any property in the properties file is set to
an invalid value.

The default is TRUE.

Props.LiveUpdate
boolean

No command line
equivalent.

Use this property to specify whether the JDBC
Gateway monitors its properties file for any
changes made while running, and whether it
updates those property values that have changed.

This property takes the following values:

FALSE: The gateway does not monitor its
properties file while running.

TRUE: The running process monitors its properties
file for any changes and updates those property
values that have changed.

Note : Whether a property value becomes effective
depends on what the property defines and also on
how it is consumed internally by the application.
For example, the JDBC Gateway retrieves the
Gate.Jdbc.Username and
Gate.Jdbc.Password properties only when
there is a write failure. If the property file was
modified but there is no write failure, the
Gate.Jdbc.Username and
Gate.Jdbc.Password properties will not be
reloaded regardless of whether
Props.LiveUpdate is set to TRUE.

Property values that were originally set using the
command line will not be altered even if their
values are updated in the properties file. This is
because values specified on the command line
always override those set in the properties file.

Chapter 1. Gateway for JDBC 29

Table 8. Common Tivoli Netcool/OMNIbus properties (continued)

Property name Command line option Description

PropsFile string -propsfile string Use this property to specify the location of the
gateway properties file.

The default is $OMNIHOME/etc/G_JDBC.props.

UniqueLog boolean -uniquelog boolean Use this property to specify that log file names are
made unique by adding the Process ID (PID) of the
gateway to the file name.

The default is FALSE.

JDBC Gateway properties
Table 9 on page 30 lists the available JDBC gateway properties.

Table 9. JDBC Gateway properties

Property name Command line option Description

Gate.Jdbc.ActionCodeFie
ld string

-jdbcactioncodefield
string

Use this property to specify the column
name for action code information when
the gateway is in audit mode.

The default is ACTIONCODE.

Gate.Jdbc.ActionTimeFie
ld string

-jdbcactiontimefield
string

Use this property to specify the column
name for the action time information
when the gateway is in audit mode.

The default is ACTIONTIME.

Gate.Jdbc.Connections
integer

-jdbcconnections
integer

Use this property to specify the number
of connections to the target database.

The default is 3.

Gate.Jdbc.DeletedAtFiel
d string

-jdbcdeleteatfield
string

Use this property to specify the field in
the target table that is used to record the
time of deletion of an alert.

This property is only required when
running the gateway in reporting mode.

The default is DELETEDAT.

Gate.Jdbc.Details
TableName string

-
jdbcdetailstablename
string

Use this property to specify the name of
the target database table for storing data
from the alerts.details
ObjectServer table.

The default is REPORTER_DETAILS.

Gate.Jdbc.Driver string -jdbcdriver string Use this property to specify the JDBC
driver.

The default is "".

30 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Table 9. JDBC Gateway properties (continued)

Property name Command line option Description

Gate.Jdbc.DriverPasswor
dPropertyName string

-
jdbcdriverpasswordpr
opname string

Use this property to specify the driver
property key to the value configured in
the Gate.Jdbc.Password property for
the JDBC connection.

If no value is specified for this property,
the gateway will use the default value.

The default is password.

Gate.Jdbc.DriverUserPro
pertyName string

-
jdbcdriveruserpropna
me string

Use this property to specify the driver
property key to the value configured in
the Gate.Jdbc.Username property for
the JDBC connection.

If no value is specified for this property,
the gateway will use the default value.

The default is user.

Gate.Jdbc.DupIgnore string -jdbcdupignore string Use this property to specify what fields
to ignore when de-duplicating alert
updates.

This property can take multiple values,
each separated by a space.

The default is LastModified
StateChange.

Gate.Jdbc.FatalErrors
string

-jdbcfatalerrors string Use this property to specify which
SQLSTATE prefixes are considered fatal
when processing a batch of alerts.

This property can take multiple values,
each separated by a space.

The default is 0A 42.

Gate.Jdbc.Initializatio
n String string

-
jdbcinitializationst
ring string

Use this property to specify an SQL
initialization string to execute on
connection to the target database.

The default is "".

Gate.Jdbc.Initializatio
nTimeout integer

-
initializationtimeou
t integer

Use this property to configure the
timeout (in seconds) for the
Gate.Jdbc.InitializationString
operation.

The default is 10.

Chapter 1. Gateway for JDBC 31

Table 9. JDBC Gateway properties (continued)

Property name Command line option Description

Gate.Jdbc.InitializeAll
Sessions string

-jdbcinitallsessions
(This is equivalent to
Gate.Jdbc.Initialize
AllSessions with a value
of true.)

-jdbcinitonesession
(This is equivalent to
Gate.Jdbc.Initialize
AllSessions with a value
of false.)

Use this property to configure the scope
of
Gate.Jdbc.InitializationString
operation in all sessions or just one
session.

The initialization that the amend table
schema should be executed in one
session, because duplicating action of
such is a violation in most databases, the
SQL exception will trigger the gateway to
exit.

The default is true.

Gate.Jdbc.JavaSystemPro
psFile string

-
jdbcjavasystempropsf
ile string

Use this property to specify the file
containing the Java system properties
used in JDBC connection.

The default is "".

Notes :

1. Do not use this file to hold Java
System properties that are meant to
be immediately applied when the JVM
starts up. Use instead the
Gate.Java.Arguments property.

2. Do not configure the same property in
the Gate.Java.Arguments
property and as the Java system
properties file name, otherwise the
value in the file will supersede it.

See “Supporting configuration files” on
page 44.

Gate.Jdbc.JdbcPropsFile
string

jdbcjdbcpropsfile
string

Use this property to specify the file
containing driver properties for the JDBC
connection.

See Supporting Configuration Files.

The default is "".

Gate.Jdbc.Journal
TableName string

-
jdbcjournaltablename
string

Use this property to specify the name of
the target database table for storing data
from the alerts.journal
ObjectServer table.

The default is REPORTER_JOURNAL.

Gate.Jdbc.MaxBatchSize
integer

-jdbcmaxbatchsize
integer

Use this property to specify the
maximum number of rows to process in a
batch.

The default is 250.

32 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Table 9. JDBC Gateway properties (continued)

Property name Command line option Description

Gate.Jdbc.Mode string -jdbcmode string

-jdbcaudit (This is
equivalent to
Gate.Jdbc.Mode with a
value of AUDIT.)

-jdbcreporter (This is
equivalent to
Gate.Jdbc.Mode with a
value of REPORTING.)

Use this property to specify the mode of
operation of the gateway. This property
takes the following values:

AUDIT: The gateway runs in audit mode.

REPORTING: The gateway runs in
reporting mode.

The default is REPORTING.

Gate.Jdbc.OrderedWrites
integer

-jdbcorderedwrites
integer

Use this property to insert status table
rows before the journal and details rows.

The default is 1.

Gate.Jdbc.Partitioning
Field string

-
jdbcpartitioningfiel
d string

Use this property to specify the field to
use for partitioning.

The default is "".

Gate.Jdbc.Password string -jdbcpassword string Use this property to specify the
password for the target database.

The default is "".

Note : If you want to encrypt this
password, use the nco_aes_crypt
utility supplied with Tivoli Netcool/
OMNIbus. For more information, see
“FIPS mode and encryption” on page
52.

Gate.Jdbc.Preconnection
Wait integer

-
jdbcpreconnectionwai
t integer

Use this property to configure the wait
interval (in milliseconds) for consecutive
JDBC connection attempt to avoid
spurious login issue caused by resource
contention in the target’s authentication
service.

The default is 1000.

Gate.Jdbc.Reconnect
Timeout integer

-
jdbcreconnecttimeout
integer

Use this property to specify the time (in
seconds) that the gateway waits before
attempting to reconnect to the target
database after losing the connection.

The default is 30.

Gate.Jdbc.ResyncFilter
string

-jdbcresyncfilter
string

Use this property to specify a filter for
restricting open events in the target
database when the gateway is operating
in bidirectional resynchronization mode.

The default is "".

Chapter 1. Gateway for JDBC 33

Table 9. JDBC Gateway properties (continued)

Property name Command line option Description

Gate.Jdbc.ResyncMode
string

-jdbcresyncmode string

-jdbcresyncnone (This is
equivalent to
Gate.Jdbc.ResyncMode
with a value of NONE.)

-jdbcresyncuni (This is
equivalent to
Gate.Jdbc.ResyncMode
with a value of UNI.)

-jdbcresyncbi (This is
equivalent to
Gate.Jdbc.ResyncMode
with a value of BI.)

-jdbcresyncauto (This is
equivalent to
Gate.Jdbc.ResyncMode
with a value of AUTO.)

Use this property to specify a
resynchronization mode for the gateway.
This property takes the following values:

NONE: The gateway does not perform
resynchronization.

UNI: The gateway operates in
unidirectional resynchronization mode.

BI: The gateway operates in bidirectional
resynchronization mode.

AUTO: The gateway operates in
unidirectional resynchronization mode by
default. If its alert cache is empty on
startup, which normally only occurs the
first time it is run, the gateway operates
in bidirectional resynchronization mode.

The default is AUTO.

Gate.Jdbc.RetryErrors
string

-jdbcretryerrors string Use this property to specify which
SQLSTATE prefixes will cause the
current batch of alerts to be retried.

This property can take multiple values,
each separated by a space.

The default is 08 28 40 HYT.

Gate.Jdbc.SerialField
string

-jdbcserialfield string Use this property to specify the serial
field in the target database when the
gateway is running in audit mode. The
value that will populate the target
database comes from the
ServerSerial field. This is for delete
records when the serial field is set to NOT
NULL.

The default gateway behaviour is that
SERIAL is allowed to be NULL and this
property does not need to be specified.

The default is "".

Gate.Jdbc.Server
NameField string

-jdbcservernamefield
string

Use this property to specify the field in
the target table that contains the server
name.

The default is SERVERNAME.

Gate.Jdbc.Server
SerialField string

-
jdbcserverserialname
string

Use this property to specify the field in
the target table that contains the server
serial.

The default is SERVERSERIAL.

34 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Table 9. JDBC Gateway properties (continued)

Property name Command line option Description

Gate.Jdbc.SqlTimeout
integer

-sqltimeout integer Use this property to configure the
timeout (in seconds) for SQL operations.

The default is 600.

Note : 600 seconds is used for backward
compatibility as the legacy
implementation was using the same
hardcoded timeout value.

Gate.Jdbc.Status
TableName string

-jdbcstatustablename
string

Use this property to specify the name of
the target database table for storing data
from the alerts.status ObjectServer
table.

The default is REPORTER_STATUS.

Gate.Jdbc.SuppressDelet
es boolean

-jdbcsuppressdeletes
boolean

Use this property to suppress deleted
events from the ObjectServer. The
following values are valid:

• TRUE : The gateway suppresses
deleted events.

• FALSE : The gateway does not
suppress deleted events.

The default is FALSE.

Gate.Jdbc.TestCount
integer

-jdbctestcount integer

-jdbcnotest

Use this property to specify the number
of internal events the gateway generates
to test the JDBC connection. This
property specifies the number of test
alerts to create, update, journal then
delete, populating the target database in
the process.

The default is 0.

You can use the -jdbcnotest
command line option to set the
Gate.Jdbc.TestCount value to 0. This
turns off test alerts.

Note : The simulated alerts use the
server name JDBC_TEST.

Gate.Jdbc.Url string -jdbcurl string Use this property to specify the URL of
the target database.

The default is "".

Chapter 1. Gateway for JDBC 35

Table 9. JDBC Gateway properties (continued)

Property name Command line option Description

Gate.Jdbc.Username string -jdbcusername string Use this property to specify the user
name for the target database.

The default is "".

Note : For more information about
configuring this property see the
following configuration section:
“Configuring the database connection”
on page 13.

Gate.Jdbc.UnknownErrors
string

-jdbcunknownerrors
string

Use this property to specify how the
gateway handles unknown SQL errors.
This property takes the following values:

ABORT: The gateway aborts the
operation.

IGNORE: The gateway ignores the error
message.

RECONNECT: The gateway attempts to
reconnect to the target database.

RETRY: The gateway retries the
operation that caused the error message.

The default is RECONNECT.

Generic gateway properties
Table 10 on page 36 lists the available generic gateway properties.

Table 10. Generic gateway properties

Property name Command line option Description

Gate.CacheHashTblSize
integer

-cachehtblsize integer Use this property to specify the
number of elements the gateway
allocates for the hash table
cache.

The default is 5023.

Gate.MapFile string -mapfile string Use this property to specify the
mapping file for the gateway to
use.

The default is $OMNIHOME/
gates/jdbc/jdbc.map.

Gate.NGtkDebug boolean -ngtkdebug boolean Use this property to enable the
logging of NGTK library debug
messages.

The default is TRUE.

36 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Table 10. Generic gateway properties (continued)

Property name Command line option Description

Gate.PAAware integer -paaware integer This property indicates whether
the gateway is PA aware.

The default is 0 (not PA aware).

Note : This property is
maintained by the PA server and
is included in the properties file
for information only.

Gate.PAAwareName string -paname string Use this property to specify the
name of the Process Agent
controlling the gateway.

The default is "".

Note : This property is
maintained by the PA server and
is included in the properties file
for information only.

Gate.ResyncTables string -gateresynctables string Use this property to specify the
name of the target database
table for storing data from a
secondary dynamic ObjectServer
table.

The default is "".

Note : This property accepts
spaces, tabs, colons, and
commas as table name
separators. For more information
see, “Table replication definition
file” on page 47.

Gate.StartupCmdFile string -startupcmdfile string Use this property to specify the
location of the startup command
file.

The default is $OMNIHOME/
gates/jdbc/
jdbc.startup.cmd.

Gate.Transfer.
FailoverSyncRate integer

-fsyncrate integer Use this property to specify the
rate (in seconds) of the failover
synchronization.

The default is 60.

Gate.UnixAdminGrp string -unixadmingrp string Use this property to specify the
administration group to which the
gateway must belong if standard
UNIX authentication is used.

The default is ncoadmin.

Chapter 1. Gateway for JDBC 37

Table 10. Generic gateway properties (continued)

Property name Command line option Description

Gate.UsePamAuth boolean -usepamauth boolean Use this property to specify
whether PAM authentication is
used.

The default is FALSE.

Note : To run the gateway in FIPS
140-2 mode, you must set this
property to TRUE.

Java properties
Table 11 on page 38 lists the available Java properties.

Table 11. Java properties

Property name Command line option Description

Gate.Java.Arguments string -javaarguments string Use this property to specify the
arguments to use when starting
Java.

The default is "".

Gate.Java.ClassPath string -javaclasspath string Use this property to specify the
environment variable used to
store the location of the Java
libraries.

The default is $CLASSPATH.

Gate.Java.Debug boolean -javadebug boolean Use this property to enable the
logging of Java debug messages.

The default is TRUE.

Gate.Java.LibraryPath
string

-javalibrarypath string Use this property to specify the
location of the Java libraries that
will be set in the environment
variable specified by the
Gate.Java.ClassPath
property.

The default is "".

Mapping properties
Table 12 on page 39 lists the available mapping properties.

38 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Table 12. Mapping properties

Property name Command line option Description

Gate.Mapper.Debug boolean -mapperdebug boolean Use this property to enable the
logging of mapper debug
messages.

The default is TRUE.

Gate.Mapper.Forward
HistoricDetails boolean

-mapperforhistdtls boolean Use this property to specify
whether the gateway forwards all
historic details on converted
update.

The default is FALSE.

Gate.Mapper.Forward
HistoricJournals boolean

-mapperforhistjrnl boolean Use this property to specify
whether the gateway forwards all
historic journals on converted
update.

The default is FALSE.

Gateway Reader-Writer properties
Table 13 on page 39 lists the available gateway reader-writer properties.

Table 13. Gateway Reader-Writer properties

Property name Command line option Description

Gate.RdrWtr.BufferSize
integer

-rdrwtrbufsize integer Use this property to specify the
number of entries that the
gateway stores in the buffer
before flushing, if buffering is
enabled. This property can be
used to fine-tune the efficiency
of the gateway.

The default is 25.

Note : The gateway flushes the
buffer when the end of a batch
of SQL statements has been
reached regardless of the buffer
size.

Gate.RdrWtr.CommonNames
string

-rdrwtrcommonnanes string Use this property to specify a
list of common names.

The default is "".

Gate.RdrWtr.Debug boolean -rdrwtrdebug boolean Use this property to specify
whether the gateway includes
gateway reader debug
messages in the debug log.

The default is TRUE.

Chapter 1. Gateway for JDBC 39

Table 13. Gateway Reader-Writer properties (continued)

Property name Command line option Description

Gate.RdrWtr.DeleteIfNo
Dedup boolean

-rdrwtrdeleteifnodedup
boolean

Use this property to specify
whether the gateway deletes
duplicate events.

The default is FALSE.

Gate.RdrWtr.Description
string

-rdrwtrdescription string Use this property to specify the
application description for the
reader connection. This
description is used in triggers
and allows you to determine
which component of the
gateway attempted to perform
an action.

The default is "Gateway
Reader/Writer".

Gate.RdrWtr.DetailsTable
Name string

-detailstblname string Use this property to specify the
name of the status table that the
gateway reads.

The default is
alerts.details.

Gate.RdrWtr.Failback
Enabled boolean

-rdrwtrfailbackenabled
boolean

Use this property to specify
whether the gateway attempts
to fail back to the primary
ObjectServer following an
ObjectServer failover.

The default is False.

Note : The gateway attempts to
fail back with the frequency
specified by the Gate.RdrWtr.
FailbackTimeout property.

Gate.RdrWtr.Failback
Timeout integer

-readerfailbacktimeout
integer

Use this property to specify the
frequency (in seconds) with
which the gateway attempts to
fail back to the primary system
following a system failover.

The default is 30.

Note : The gateway attempts to
fail back to the primary
ObjectServer only if the
Gate.RdrWtr.
FailbackEnabled property is
set to TRUE.

40 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Table 13. Gateway Reader-Writer properties (continued)

Property name Command line option Description

Gate.RdrWtr.IducFlushRate
integer

-iducflushrate integer Use this property to specify the
rate (in seconds) of the
granularity of the reader.

If you set this property to 0, the
reader gets its updates at the
same granular rate as that of the
ObjectServer to which it is
connected.

The default is 0.

Note : If you set this property to
a value greater than 0, the
reader issues automatic IDUC
flush requests to the
ObjectServer with this
frequency. This enables the
reader to run at a faster
granularity than that of the
ObjectServer, thus enabling the
gateway to capture more
detailed event changes in
systems where the ObjectServer
itself has high granularity
settings.

Gate.RdrWtr.
JournalTableName string

-journaltblname string Use this property to specify the
name of the status table that the
gateway reads.

The default is
alerts.journal.

Gate.RdrWtr.LogOSSql boolean -logossql boolean Use this property to specify
whether the gateway logs all
SQL commands sent to the
ObjectServer in debug mode.

The default is FALSE.

Chapter 1. Gateway for JDBC 41

Table 13. Gateway Reader-Writer properties (continued)

Property name Command line option Description

Gate.RdrWtr.Password string -password string Use this property to specify the
password associated with the
user specified by the
Gate.RdrWtr.Username
property. You must specify this
password when connecting to
the ObjectServer in secure
mode.

The default is "".

Note : When connecting to the
ObjectServer in secure mode
the password may be in plain
text, but if you want to encrypt
this password, use the
nco_aes_crypt utility
supplied with Tivoli Netcool/
OMNIbus. For more information,
see “FIPS mode and
encryption” on page 52.

Gate.RdrWtr.
ReconnectTimeout integer

-reconntimeout integer Use this property to specify the
time (in seconds) between each
reconnection poll attempt that
the gateway makes if the
connection to the ObjectServer
is lost.

The default is 30.

Gate.RdrWtr.
RefreshCacheOnUpdate boolean

-rdrwtrrefresh
cacheonupdate boolean

Use this property to specify
whether the gateway refreshes
the cache after each update.

The default is FALSE.

Gate.RdrWtr.Server string -rdrwtrserver string Use this property to specify the
name of the ObjectServer from
which the gateway reads alerts

The default is NCOMS.

Gate.RdrWtr.
StatusTableName string

-rdrwtrstatustablename
string

Use this property to specify the
name of the target database
table from which the
ObjectServer reads data.

The default is alert.status.

42 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Table 13. Gateway Reader-Writer properties (continued)

Property name Command line option Description

Gate.RdrWtr.
TblReplicateDefFile string

-tblrepdeffile string Use this property to specify the
path to the table replication
definition file.

The default is $OMNIHOME/
gates/jdbc/
jdbc.rdrwtr.tblrep.def.

Gate.RdrWtr.Username string -username string Use this property to specify the
user name used to authenticate
the ObjectServer connection.
This property is used with the
Gate.RdrWtr.Password
property.

The default is root.

Note : When connecting to the
ObjectServer in secure mode
you must specify this property.

Gate.RdrWtr.UseBulkInCmd
boolean

-usebulkincmd boolean Use this property to enable SQL
commands to be inserted in
bulk into the gateway.

The default is FALSE.

Connection properties
Table 14 on page 43 lists the available mapping properties.

Table 14. Connection properties

Property name Command line option Description

Gate.StartupCmdFilePath
string

-startupcmdfilepath string Use this property to specify the
file path to the gateway start up
file.

The default is $OMNIHOME/
gates/jdbc/
jdbc.startup.cmd.

Gate.Transfer.Failover
SyncRate integer

-transferfailoversyncrate
integer

Use this property to specify the
rate (in seconds) at which the re-
synchronization takes place on
failover.

The default is 60.

Gate.UnixAdminGrp string -unixadmingrp string Use this property to specify the
UNIX authentication
administration group name

The default is NCOADMIN.

Chapter 1. Gateway for JDBC 43

Table 14. Connection properties (continued)

Property name Command line option Description

Gate.UsePamAuth boolean -usepamauth boolean Use this property to enable the
gateway to use PAM
authentication. This property
takes two values:

TRUE : The gateway uses PAM
authentication.

FALSE : The gateway uses UNIX
authentication.

The default is FALSE.

Supporting configuration files
The gateway package bundles supporting configuration files to hold properties for secure JDBC
connection modes, such as SSL, Kerberos, and data integrity.

Table 15. Supporting configuration files

Configuration file Purpose

jdbc_conn.properties JDBC connection properties for the database connection.

Configure the path to this file using the
Gate.Jdbc.JdbcPropsFile property.

jdbc_javasys.properties Java system properties working in conjunction with other JDBC
connection parameters to establish a database connection.

Configure the path to this file using the
Gate.Jdbc.JavaSystemPropsFile property.

File format
The supporting configuration files should be in key-value pair format, namely: key=value

The gateway ignores lines starting with #.

Date security
The gateway can process value field in the form of encrypted data.

Use nco_aes_crypt with AES_FIPS algorithm to encrypt configuration value. When deployed,
ConfigCryptoAlg and ConfigKeyFile must contain AES_FIPS and the key file respectively.

Environment Variables
The gateway can expand defined environment variables in value fields.

Properties for the various database connection modes
Table 16. Oracle database

Mode JDBC Properties Java System properties

44 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Table 16. Oracle database (continued)

SSL oracle.net.authentication_services javax.net.ssl.keyStore
javax.net.ssl.keyStoreType
javax.net.ssl.keyStorePassword
javax.net.ssl.trustStore
javax.net.ssl.trustStoreType
javax.net.ssl.trustStorePassword

oracle.net.ssl_server_dn_match
oracle.net.ssl_cipher_suites
oracle.net.tns_admin

Kerberos oracle.net.authentication_services
oracle.net.kerberos5_cc_name
oracle.net.kerberos5_mutual_authentication

java.security.krb5.conf

Data
Integrity

oracle.net.crypto_checksum_client
oracle.net.crypto_checksum_types_client
oracle.net.encryption_client
oracle.net.encryption_types_client

None

Note : For Kerberos-SSL-combined connections, oracle.net.authentication_services must
contain SSL and KERBEROS5, for example:

oracle.net.authentication_services=(KERBEROS5, SSL)

Table 17. IBM DB2

Mode JDBC connection properties Java System properties

Kerberos kerberosServerPrincipal
securityMechanism=11

java.security.auth.login.config

SSL None javax.net.ssl.trustStore
javax.net.ssl.trustStoreType
javax.net.ssl.trustStorePassword

Configure the following parameters to enable IBM DB2 Kerberos-authenticated connections:

java.security.auth.login.config=$OMNIHOME/gates/jdbc/jaas.conf

kerberosServerPrincipal=<serverPrincipal>@<REALM>

securityMechanism=11 (11 is the value for Kerberos security).

Notes :

kerberosServerPrincipal must be the server principal in KRB5_KTNAME.

securityMechanism=11 denotes using Kerberos authentication.

A sample of Java Authentication and Authorization Service (JAAS) Client configuration is available in the
$OMNIHOME/gates/jdbc/jaas.conf file.

Configurations for passing credentials from the gateway to the DB2 Kerberos
service
There are two ways in which the gateway can pass credentials to the DB2 Kerberos service:

• Using the Kerberos cache file
• Not using the Kerberos cache file

Chapter 1. Gateway for JDBC 45

Configurations for both methods are described in the following table.

Table 18. Configurations for passing credentials to the DB2 Kerberos service

Using Kerberos Cache Files Not Using Kerberos Cache Files

JaasClient{

com.ibm.security.auth.module.Krb5LoginModule
required
 principal=<kerberos_principal>
 credsType=initiator
 useCcache=<kerberos_cache_file>
 debug=true
};

Configure the principal and useCache fields
accordingly.

As the login credentials are obtained from
Kerberos cache, the corresponding gateway
properties must be empty. Namely:

Gate.Jdbc.Username: ''
Gate.Jdbc.Password: ''

JaasClient{

com.ibm.security.auth.module.Krb5LoginModule
required
 debug=true
 useDefaultCcache=false;
};

The absence of the Kerberos cache requires the
gateway properties to have the login credentials
specified in the following properties:

Gate.Jdbc.Username: '<principal>'
Gate.Jdbc.Password: '<password>'

Deploying the gateway with non-IBM Java
On secure connections, some vendor JDBC drivers may require certain class packages tied to specific
brand and version of Java.

For example, in Kerberos mode, the Oracle JDBC driver invokes the methods from the
sun.security.krb5.* classes, which are available only in Oracle Java.

Consult the driver user guide or the vendor support to ascertain the Java requirement.

To run the gateway using non-IBM Java, perform the steps accordingly.

UNIX:

Update the NCO_GATEWAY_JRE environment variable with the Java home directory.

Note: NCO_GATEWAY_JRE is referenced in nco_g_jdbc.env.

Map definition file
The mapping definition file defines how the gateway maps data received from the ObjectServer to tables
in the target database.

The default map definition file installed with the gateway, jdbc.map, configures the gateway to operate
in reporting mode. If you want to run the gateway in audit mode, copy $OMNIHOME/gates/jdbc/
audit.jdbc.map to $OMNIHOME/gates/jdbc/jdbc.map.

The default map definition file contains example mappings. It is advisable to make a backup copy of the
default file for future reference.

Startup command file
The startup command file contains a set of commands that the gateway executes each time it starts.

You can specify the location of the startup command file using the generic Netcool/OMNIbus
Gate.StartupCmdFile property.

The default startup command file is located in the following directory: $OMNIHOME/gates/jdbc/
jdbc.startup.cmd

46 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

The default startup command file contains example commands. You should make a copy of the default file
for future reference.

You can use the following commands within the startup command file:

• SHOW PROPS - Use this command to display the current configuration of the gateway by listing all
properties and their values.

• GET PROPERTY 'property_name' - Use this command to return the value of the property specified
in property_name from the gateway properties file.

• SET PROPERTY 'property_name' TO ('string' | integer | TRUE | YES | FALSE |
NO); - Use this command to set the value of the property specified in property_name in the gateway
properties file.

• SET LOG LEVEL TO - Use this command to set the level of message logging for the gateway. This
command can take the following values: fatal, error, warn, info or debug. The default logging
level is warn.

These commands can also be entered using the SQL interactive interface (nco_sql). For more
information about using the SQL interactive interface, see the IBM Tivoli Netcool/OMNIbus Administration
Guide.

For more information about the startup command file, see the IBM Tivoli Netcool/OMNIbus Probe and
Gateway Guide.

TRANSFER command
The TRANSFER command transfers data from an ObjectServer table to a target table using a transfer map.
The data can also be filtered. This command is most useful is cases where once populated, the target
table contents are unlikely to change.

The TRANSFER command takes the following syntax:

TRANSFER FROM 'source' [TO 'target']

The TRANSFER command is usually specified in the startup command file. To run the TRANSFER
command from the startup command file use the following example:

TRANSFER FROM 'source_table' TO 'target_table'
 VIA FILTER 'Colname != \'Severity\''
 WITH DELETE VIA 'Column_Name <> \'Severity\''
 USING TRANSFER_MAP GatewayTablesMap;

Note : To replicate data from dynamic secondary tables you must use the Gate.ResyncTables property
in the table replication definition file.

This command can also be entered using the SQL interactive interface (nco_sql). For more information
about using the SQL interactive interface, see the IBM Tivoli Netcool/OMNIbus Administration Guide.

For more information about the startup command file and the TRANSFER command, see the IBM Tivoli
Netcool/OMNIbus Probe and Gateway Guide.

Table replication definition file
The gateway replicates data between ObjectServer tables and the gateway target. The table replication
definition file is used to define which tables and event types are monitored in Tivoli Netcool/OMNIbus and
forwarded to the target that the gateway is configured to send data to.

You can specify the location of the table replication definition file using following generic Tivoli Netcool/
OMNIbus property.

Gate.Reader.TblReplicateDefFile

The default table replication definition file is in the following directory: $OMNIHOME/gates/jdbc/
jdbc.rdrwtr.tblrep.def

Chapter 1. Gateway for JDBC 47

The default table replication definition file contains example commands. You should make a backup copy
of the default file for future reference.

Note : You should use the REPLICATE command to replicate data from the primary tables
(alerts.status, alerts.journal, alerts.details) and dynamic secondary tables (if required).

You can add one or more optional clauses to the REPLICATE command to further process the data during
replication. The available commands are listed in the following syntax example. Use the optional clauses
in the order in which they are listed in the syntax. For example, when using both the

FILTER WITH and AFTER IDUC DO clauses, the FILTER WITH clause must precede the AFTER IDUC
DO clause.

REPLICATE ALL | (INSERTS, UPDATES, DELETES)
FROM TABLE sourcetable
USING MAP mapname
[FILTER WITH filter]
[INTO targettable]
[ORDER BY order, ...]
[AFTER IDUC DO afteriduc] ;

Table 19. Optional replication commands

Command Description

FILTER WITH 'filter' Filters the database rows selected for replication, where filter
defines the filter that the gateway uses in the WHERE clause of
the SQL SELECT.

Filtering is positive by default, which means that only those
events that match the filter definition are replicated. You can
use a negative filter by putting an exclamation mark (!) before
the equals sign (=) in the filter clause. For example, the
following filter clause replicates all events whose severity is
not 5:

FILTER WITH 'Severity !=5'

ORDER BY 'order' Order results by the SQL SELECT ORDER BY clause used to
get data. A potential use case might be to order by first
occurrence, so that alerts are processed in chronological
order, in which case the value specified for order would be
'FirstOccurrence'.

AFTER IDUC DO 'afteriduc' Updates replicated rows, where afteriduc specifies which field
to update with what value. This uses the SQL UPDATE action
to execute on rows retrieved by the SQL SELECT action used
to get data, e.g. 'SentToCRM=1'.

Using the Gate.ResyncTables command to resynchronize data on startup
from dynamic tables
To replicate data from dynamic secondary tables you must use the Gate.ResyncTables property. You
must configure this property before starting the gateway. Any tables in addition to the main
alerts.status, alerts.details, and alerts.journal tables, which are resynchronized by
default, should be specified in this property. To configure this property, use the following steps:

1. Specify the table using the Gate.ResyncTables command. The command accepts spaces, tabs,
colons and commas as table name separators. For example,

Gate.ResyncTables: 'alerts.conversions custom.name.one custom.name.two'
2. Add an entry to the table replication definition file for the dynamic table.

48 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Note : Using this method to resynchronize tables may cause constraint errors in the target database.

Converting alerts into a more readable format in a reporter table
This topic describes how to convert alerts into a more readable format in a reporter table.

The alerts.conversions table is used to provide an easy conversion from a numeric value to a string
for any column.

Conversions are associated with the columns in the ObjectServer alerts.status table, and they map
integer values and UTC(time) values for the columns to string values. The conversions that are configured
in the Netcool/OMNIbus Administrator are used in the event list, to translate integer values into strings for
readability. For example, default conversions exist for event severities; if an event has a severity of 4, the
text Major is displayed for the event severity in the event list.

To configure the conversions table, use the following steps:

1. Add a definition to $OMNIHOME/gates/jdbc/jdbc.rdrwtr.tblrep.def:

REPLICATE ALL FROM TABLE 'alerts.conversions' USING MAP 'ConversionsMap' INTO
'reporter_conversions';

2. Add a transfer request to provide initial values for such tables in jdbc.startup.cmd:

TRANSFER FROM 'alerts.conversions' TO 'reporter_conversions' DELETE USING TRANSFER_MAP
ConversionsMap;

3. Go into OMNIbus and do: update alerts.conversions set Value=Value;
4. On the database server, verify whether the database user has access to the reporter_conversions

table.
5. Grant the user access if necessary. For example:

GRANT ALL ON REPORTER.REPORTER_CONVERSIONS TO "KUSER1@FYRE.IBM.COM";

6. Start the gateway.

AfterIDUC and Filter functions
The Gateway for Oracle and the Gateway for ODBC implemented AfterIDUC and filter functions using
the Gate.ReaderAfterIDUC and Gate.ReaderFilter properties. The Gateway for JDBC uses the
table replication definition file, Gate.RdrWtr.TblReplicateDefFile, to perform the same functions.

Use the AFTER IDUC DO command to update replicated rows. In the following example, the AFTER
IDUC DO clause instructs the gateway to set the Archived column to 1 for all replicated rows:

REPLICATE ALL FROM TABLE 'alerts.status'
 USING MAP 'StatusMap'
 AFTER IDUC DO 'Archived=1';

Use the FILTER WITH command to filter the data that is replicated to the target database. In the
following example, the FILTER WITH clause instructs the gateway to only replicate alerts that originate
from the NCOMS_US and NCOMS_CA ObjectServers:

REPLICATE ALL FROM TABLE 'alerts.status'
 USING MAP 'StatusMap'
 FILTER WITH 'ServerName IN (\'NCOMS_US\',\'NCOMS_CA\')';

Note : You must use backslash characters (\) to escape the quote characters (') in the query string.

An important consideration when filtering replicated data is that the filter should match a characteristic of
the alerts that does not change over time. This can be the alert source, as in the example above. You could
also use the Class and Manager elements of alerts as a filter. Elements of alerts such as Severity make
for bad filter criteria because they can change over the lifecycle of an alert.

Chapter 1. Gateway for JDBC 49

Using a partitioning field
You can use the Gate.Jdbc.PartitioningField property to qualify the identification of alerts for the
purpose of partitioning the target database.

By default, alerts are identified using the ServerName and ServerSerial fields. You can use the
Gate.Jdbc.PartitioningField property to specify an additional field that can be used to identify
alerts for the purpose of database partitioning. The FirstOccurrence field is a typical choice for this
purpose.

Filtering resynchronization data
You can use the Gate.Jdbc.ResyncFilter property to specify a filter for restricting open events in the
target database. The events are filtered when the gateway is operating in bidirectional resynchronization
mode.

When you use the Gate.Jdbc.ResyncFilter property, the gateway filters open events from the target
database using the server name of the ObjectServer as the filter criterion. The filter that you specify
becomes part of an SQL WHERE clause. The WHERE clause is then appended to the SELECT query that the
gateway uses to retrieve events from the target database.

The following example illustrates a typical use case for the Gate.Jdbc.ResyncFilter property.

Example
Assume that you are using two Netcool/OMNIbus ObjectServers, one for production and one for testing,
each with its own gateway. The server name of the production ObjectServer is PROD and the server name
of the test ObjectServer is TEST. Both gateways are archiving data into the same target database.

When the TEST gateway is performing a bidirectional resynchronization between the TEST ObjectServer
and the database, you want to prevent the TEST gateway from closing events that came from the PROD
ObjectServer. To do this, you can specify the following filter value for the Gate.Jdbc.ResyncFilter
property of the TEST gateway:

ServerName LIKE 'TEST%'

This filter causes the TEST gateway to ignore open events in the target database that came from the PROD
ObjectServer. It only resynchronizes open events that came from the TEST ObjectServer.

Note : When specifying values for the Gate.Jdbc.ResyncFilter property in the properties file, you
must use backslash characters (\) to escape the single quote characters ('). For example:

Gate.Jdbc.ResyncFilter: 'ServerName LIKE \'TEST%\''

SQL executed by the gateway
This sections describes the SQL that gateway the executes over the target database during resync on
startup if enabled.

Note : In the following examples <> brackets enclose variables determined by gateway properties as
follows: <variablename> is determined by the Gate.Jdbc.<variablename> property. For example
<ServerNameField> is determined by the Gate.Jdbc.ServerNameField property.

When the gateway is running in Reporter Mode
Gate.Jdbc.ReysncFilter set to default empty string value:

select <ServerNameField>, <ServerSerialField> from <StatusTableName> where
<DeletedAtField> is null

Gate.Jdbc.ReysncFilter defined by user:

select <ServerNameField>, <<ServerSerialField>> from <StatusTableName> where
<DeletedAtField> is null and <ResyncFilter>

50 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

When the gateway is running in Audit Mode
Gate.Jdbc.ReysncFilter set to default empty string value:

select distinct <ServerNameField>, <ServerSerialField> from <StatusTableName> o
where o.<ActionCodeField> = 'I' and not exists

(select * from <StatusTableName> d where d.<ServerNameField>
=o.<ServerNameField> and d.<ServerSerialField> = o.<ServerSerialField> and
d.<ActionCodeField> = 'D')

Gate.Jdbc.ReysncFilter defined by user:

select distinct <ServerNameField>, <ServerSerialField> from <StatusTableName> o
where o.<ActionCodeField> = 'I' and not exists

(select * from <StatusTableName> d where d.<ServerNameField>
=o.<ServerNameField> and d.<ServerSerialField> = o.<ServerSerialField> and
d.<ActionCodeField> = 'D') and <ResyncFilter>

Note : A complex ResyncFilter may need to include enclosing brackets: (and) to ensure the correct order
of precedence in the SQL definition.

Message log file
The gateway creates a message log file to store all messages that it generates while running.

You can use the MessageLog property to specify a name for the message log file. The default log file
G_JDBC.log is located in the following directory:

$OMNIHOME/log

You can specify the maximum size of the log file using the MaxLogFileSize property. The default is
1024 KB. When the log file reaches the specified maximum size, the ObjectServer archives it using the
extension .log_old and starts a new log file with the extension .log. When the new log file reaches the
maximum size, it is archived in turn and overwrites the first archived log file.

You can specify the level of message logging using the MessageLevel property. The default is warn. The
default logging level is sufficient to identify most configuration problems. If you require more information
about how the gateway is running, set the MessageLevel property to debug. This option produces a lot
of detailed output, resulting in large log files.

Log file environment variables
You can control the log file size and log file rotation using the following environment variables:

• NDE_LOGFILE_MAXSIZE sets the maximum log file size.

The following example sets the maximum log file size to 1024000 bytes (1024 KB):

setenv NDE_LOGFILE_MAXSIZE 1024000
• NDE_LOGFILE_ROTATION_FORMAT enforces daily log file rotation, regardless of the maximum log file

size specified by NDE_LOGFILE_MAXSIZE. It also specifies the format of the archived log file name.

You can use one of the following types of parameter to set this variable: any literal string (for example,
rotation), a POSIX timestamp format, or a Unicode Locale Data Markup Language (LDML) timestamp
format. The literal string or the timestamp is appended to the archived log file, for example,
nco_g_odbc.log_rotation.

The following commands enable daily log file rotation:

Parameter Command

Literal string setenv NDE_LOGFILE_ROTATION_FORMAT \'literal_string\'

POSIX timestamp setenv NDE_LOGFILE_ROTATION_FORMAT %Y%m%d-%H%M

Chapter 1. Gateway for JDBC 51

Parameter Command

LDML timestamp setenv NDE_LOGFILE_ROTATION_FORMAT yyyyMMdd-HHmm

NDE_LOGFILE_ROTATION_TIME specifies the time at which log file rotation occurs each day. The
following example causes the log file to be rotated at 00:00 hours each day:

setenv NDE_LOGFILE_ROTATION_TIME 0000

For more information about using log file environment variables, see the IBM Tivoli Netcool/OMNIbus
Installation and Deployment Guide.

FIPS mode and encryption
This gateway complies with Federal Information Processing Standard 140-2 (FIPS 140-2). It can be run in
FIPS mode on any currently supported version of Tivoli Netcool/OMNIbus.

You can use encryption algorithms to secure string value entries made in the properties file, including
passwords. You must use the generic Tivoli Netcool/OMNIbus ConfigCryptoAlg property to specify the
encryption method and the generic Tivoli Netcool/OMNIbus ConfigKeyFile property to specify the
encryption key file, amongst a number of other required settings.

For more information about running the gateway in FIPS mode, and encrypting properties and passwords,
see Running the ObjectServer in secure mode, Running the proxy server in secure mode, and Encrypting
plain text passwords in routing definitions in the IBM Tivoli Netcool/OMNIbus Administration Guide.

Also see, Configuring FIPS 140-2 support for the server components in the IBM Tivoli Netcool/OMNIbus
Installation and Deployment Guide.

Also see SSL and FIPS 140-2 support in the IBM Tivoli Netcool/OMNIbus Event Integration Facility
Reference.

Also see Appendix C. WAAPI security in the IBM Tivoli Netcool/OMNIbus Web GUI Administration API
(WAAPI) User's Guide.

Note : If you run the gateway in FIPS mode, you must either use no encryption, or if you do use
encryption, you must use nco_aes_crypt with the cipher (-c) option AES_FIPS. The cipher option used
here must match the option specified by the ConfigCryptoAlg property. For example:

$NCHOME/omnibus/bin/nco_aes_crypt -c AES_FIPS -k key_file string_value

Gateway statistics
The gateway logs Reader and Writer statistics to its log file. You can use these statistics to monitor the
gateway's performance.

For the Reader component, the gateway logs the time taken to read and write an entire work batch to
disk, measured in milliseconds. This measurement is also expressed as the number of database rows
processed per second.

For the Writer component, the gateway logs the number of outstanding (unprocessed) batches and the
running row rate, measured as database rows per second processed.

When the gateway is performing adequately, the number of outstanding batches should be 0 or 1. If the
number of outstanding batches is greater than 1, this indicates that the gateway is not performing
adequately.

The running row rate is a weighted average of the historical running row rate and the row rate of the last
processed batch. The running row rate is calculated as 0.625 of the last measured running row rate plus
0.375 of the last batch row rate ((0.625 * last measured running row rate) + (0.375 * last batch row rate)).

The gateway also logs the time taken to write the persistent cache, measured in milliseconds. This time is
approximately proportional to the number of open alerts being managed by the gateway.

52 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

The gateway statistics are written to the default log file G_JDBC.log. To enable easy retrieval of the data,
every line of statistics output in the log file contains the string "STATS".

Note : Gateway statistics information is logged at the information log level, which is off by default. To
enable logging of statistics, you must set the MessageLevel property to information.

Example log file
The following is an example of the statistics information logged by the gateway.

11/02/11 23:26:23: Information: I-GJA-000-000: [ngjava]: G_JDBC:
Thread-3: STATS: 9fbb3866-bf81-4fa6-9944-ae99eaafee45
Batch write time 11 ms (1000.0 rows/second)

11/02/11 23:26:23: Information: I-GJA-000-000: [ngjava]: G_JDBC:
Thread-3: STATS: Cache write time 7 ms

11/02/11 23:26:24: Information: I-GJA-000-000: [ngjava]: G_JDBC:
pool-1-thread-1: STATS: 9fbb3866-bf81-4fa6-9944-ae99eaafee45
Batch execution time: 473

11/02/11 23:26:24: Information: I-GJA-000-000: [ngjava]: G_JDBC:
pool-1-thread-1: STATS:
Running row rate 18.907563025210084 rows/second

11/02/11 23:26:24: Information: I-GJA-000-000: [ngjava]: G_JDBC:
pool-1-thread-1: STATS: Outstanding batches 0

Error messages
Error messages provide information about problems that have occurred during the operations of the
gateway. You can use the information that they contain to resolve such problems.

The following table describes the error messages that the gateway generates:

Table 20. Error messages

Error Description Action

Batch creation failed
exception

The gateway failed to create a new
batch of work in store and
forward.

Check the exception text for an
indication of the cause of the error.
If the cause of the problem is not
clear from the error message,
contact IBM Software Support.

Data UUID of recovery
file (uuid) does not
match uuid

A persistent file has been
corrupted.

Persistent files are differentiated
by universally unique identifiers
(UUID). The UUID is used to name
a persistent file and is also
embedded in the contents of that
file. The error message is
indicating that, for a particular
persistent file, the embedded
UUID does not match the file
name UUID. The file has been
corrupted.

Locate, and save a copy of, the file
named uuid in the
$OMNIHOME/var/G_JDBC/
directory. Contact IBM Software
Support.

Chapter 1. Gateway for JDBC 53

Table 20. Error messages (continued)

Error Description Action

DML type unknown: type A data manipulation language
(DML) command of an unknown
type was requested. Inserts,
updates, and deletes are the only
types supported by the gateway.

Contact IBM Software Support.

Failed to rename file
to uuid

The gateway could not write a
persistent file named uuid.

Verify that the gateway has write
permission for the
$OMNIHOME/var/G_JDBC
directory.

SQL State is null A database processing error has
occurred and the JDBC driver did
not set a valid SQL error state. The
gateway cannot determine the
cause of the error.

Check the database log for any
indication of errors. Check that the
database can still be reached. If
there are no other obvious error
indicators, restart the gateway. If
the problem persists, contact IBM
Software Support.

JDBC error messages are described in the following topic:

• “JDBC error messages” on page 54

JDBC error messages
JDBC error messages are typically generated by the JDBC driver and the content of such messages
depends on the driver that you are using.

The following table describes the typical Java ClassNotFound exception and the three main types of
JDBC errors. Consult your JDBC driver documentation for specific information about the error messages it
generates.

Table 21. JDBC error messages

Error Description Action

java.lang.ClassNotFound
Exception: driver class

The JDBC driver class cannot be
found.

Verify that the JDBC driver class
name is correct and that the
driver .jar files and any
dependencies have been
installed to the $OMNIHOME/
gates/java directory.

Any exception thrown by the
GWJdbcNullPrepared
Statement class. Usually
containing the following error
message:
java.sql.SQLException:
Simulated transaction
error.

This indicates that the
Gate.Jdbc.Driver property is
empty and the gateway in using
an internal test JDBC driver to
discard data and simulate errors.

Correctly configuring the
Gate.Jdbc.Driver property
with the correct driver class
name.

54 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Table 21. JDBC error messages (continued)

Error Description Action

JDBC authentication errors Authentication errors are usually
caused by incorrect or invalid
user names or passwords.

Verify that you are using correct
and valid user names and
passwords for the
Gate.Jdbc.Username and
Gate.Jdbc.Password
properties, and wherever else
authentication is required.

JDBC connection errors Connection errors are typically
caused by incorrect or invalid
connection string parameters,
such as an invalid host name or
database name.

Verify that you are using correct
and valid connection string
parameters for the
Gate.Jdbc.Url property.

JDBC runtime errors Runtime errors have various
causes. A typical error of this
type is a constraint violation.
These usually occur when the
gateway is performing the initial
resynchronization.

Check the exception text for the
cause of the error.

Constraint violations indicate that
the gateway is trying to insert
duplicate data into the database.
Because the data is already in the
database, this is not a problem.

If the cause of the problem is not
clear from the error message,
contact IBM Software Support.

Running the gateway
You can start the gateway from the command line or run it as a Windows service.

To start the gateway on UNIX and Linux operating systems, run the following command:

$OMNIHOME/bin/nco_g_jdbc

To start the gateway on Windows operating systems, run the following command:

%OMNIHOME%\bin\nco_g_jdbc.exe

For information about putting the gateway under process control, see the IBM Tivoli Netcool/OMNIbus
Administration Guide.

Running the gateway as a Windows service
To run the gateway as a Windows service, use the following steps:

1. To run the gateway on the same host as the ObjectServer, use the following command to register it as
a service:

%OMNIHOME%\bin\nco_g_jdbc.exe -install -depend NCOObjectServer
2. To run the gateway on a different host to the ObjectServer, use the following command to register it as

a service:

%OMNIHOME%\bin\nco_g_jdbc.exe -install
3. Start the gateway using the Microsoft Services Management Console.

Chapter 1. Gateway for JDBC 55

Known issues
At the time of release, some issues were reported that you should be aware of when running the gateway.

This section covers the following known issues:

• “Gateway core dump when shutting it down” on page 56
• “Custom table labelling” on page 56
• “SQL error states” on page 56
• “Sybase naming schemes” on page 56

Gateway core dump when shutting it down
A slow connection can cause problems when the gateway is shutting down.

When shutting down, the gateway waits up to 30 seconds for database connections to finish processing.
If any connection is slow, and the gateway times out waiting for the connection to close, there is a small
possibility of a crash if that connection subsequently logs any messages to the log file.

Custom table labelling
The gateway and ObjectServer relationship is unable to handle labelling a custom table or a generic table
as the status table.

A custom table cannot be treated as the status table because the gateway and ObjectServer relationship
is unable to handle it.

Labelling a custom status table as a generic table is also not supported by the gateway, as it depends on a
status table being marked as a status table by the core gateway libraries.

Note : The Gate.RdrWtr.StatusTableName property should not be used to specify a custom table or a
generic table as a status table.

SQL error states
When the JDBC driver that you are using does not indicate a valid SQL error state for an error, the gateway
will make the best effort it can to recover.

In cases where the gateway cannot recover from such an error, data will be discarded and lost. The
following is an example of an error that is logged when the gateway cannot determine a valid SQL error
state:

11/26/10 14:28:20: Error: E-GJA-000-000: [ngjava]: G_JDBC:
pool-1-thread-2: SQL State is null

Sybase naming schemes
The names of Sybase database objects, such as tables and columns, are case-sensitive. You might need
to review your database schema to ensure that your naming scheme is compatible with your gateway
configuration.

Your naming scheme for database objects can affect all columns in your maps, as well as gateway-
specific properties such as Gate.Jdbc.ServerSerialField and Gate.Jdbc.StatusTableName.

Frequently asked questions
Various questions arise as users work with the JDBC Gateway. The following answer regarding how the
gateway transfers the status of an event in a single gateway period is provided for your reference.

56 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

How does the gateway transfer the status of an event in a single gateway period?
The gateway can transfer only the last status of an event in a single gateway period.

For example, when an event is raised and cleared, and the Generic Clear and Delete automations run
on the same event within a single 60 second granularity period, a single delete message is recorded on
the external database. The result is a single delete message in the external database.

Chapter 1. Gateway for JDBC 57

58 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Appendix A. Notices and Trademarks
This appendix contains the following sections:

• Notices
• Trademarks

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing 2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA

© Copyright IBM Corp. 2011, 2020 59

3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, ibm.com, AIX, Tivoli, zSeries, and Netcool are trademarks of International Business
Machines Corporation in the United States, other countries, or both.

Adobe, Acrobat, Portable Document Format (PDF), PostScript, and all Adobe-based trademarks are either
registered trademarks or trademarks of Adobe Systems Incorporated in the United States, other
countries, or both.

60 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Appendix A. Notices and Trademarks 61

62 IBM Tivoli Netcool/OMNIbus Gateway for JDBC: Reference Guide

IBM®

Part Number:

SC22-5408-11

(1
P)
 P

/N
:

	Contents
	About this guide
	Document Control Page
	Conventions used in this guide

	Chapter 1. Gateway for JDBC
	Summary
	Supported databases
	Overview of the gateway
	Audit mode and reporting mode
	Target database sizing
	Installing the gateway
	Installing probes and gateways on Tivoli Netcool/OMNIbus V8.1

	Setting environment variables
	Configuring communication details
	Configuring the database schema
	Migrating from an existing gateway

	Configuring the database connection
	Integrating with an Oracle database
	Integrating with a Microsoft SQL Server database
	Integrating with a DB2 database
	Integrating with a MySQL Server database
	Configuring SSL connections
	Configuring the gateway
	Properties file
	Properties and command line options
	Supporting configuration files
	Map definition file
	Startup command file
	TRANSFER command

	Table replication definition file
	Using the Gate.ResyncTables command to resynchronize data on startup from dynamic tables
	Converting alerts into a more readable format in a reporter table

	AfterIDUC and Filter functions
	Using a partitioning field
	Filtering resynchronization data
	Message log file
	FIPS mode and encryption

	Gateway statistics
	Error messages
	JDBC error messages

	Running the gateway
	Known issues
	Gateway core dump when shutting it down
	Custom table labelling
	SQL error states
	Sybase naming schemes

	Frequently asked questions

	Appendix A. Notices and Trademarks
	Notices
	Trademarks

